Fundamental limits of distributed tracking

Victoria Kostina

Babak Hassibi

Caltech

ISIT 2020
Control

Causality

Information

Delays
Control

Separation between control and estimation

Causal Estimation (Tracking)
Distributed tracking

Goal Design (encoders, decoder) that operate at the minimum sum rate $\sum_{k=1}^{K} R_k$ and achieve distortion

$$\frac{1}{t} \sum_{i=1}^{t} \mathbb{E} \left[d(X_i, \hat{X}_i) \right] \leq d$$
Distributed tracking

- The source X_1, X_2, \ldots has memory of the past.
- Encoder(s) and decoder have memory of the past.
- \hat{X}_i is independent of the future given the past (causal enc / dec).
Two parts

1. General coding theorem.
2. Explicit fundamental tradeoff in the Gaussian case.
Class of sources

- no restrictions on the source alphabet
Class of observation channels

Acts on each component of the source vector independently, but may have memory of the past

\[P_{Y_i^k | X_i, \text{past } X's, \text{past } Y^k's} = P_i^{\otimes n} \]

\[i = 1, 2, \ldots, t \]
$t = 1$: Classical CEO problem

Chief Estimation Officer, or Chief Executive Officer

- Introduced (discrete-alphabet source) by Berger-Zhang-Viswanathan’96.
- Viswanathan-Berger’97: an achievability bound on the rate-distortion dimension of the symmetric Gaussian CEO problem.
- Oohama’98: sum rate - distortion region for the symmetric Gaussian CEO problem.
- Prabhakaran-Tse-Ramanchandran’04: full Gaussian CEO rate region.
- Chen-Zhang-Berger-Wicker’04: water-filling representation of the minimum sum rate.
- Chen-Berger’08, Behroozi-Soleymani’09: successive coding schemes.
- Wagner-Tavildar-Viswanath’08: found the rate region of the distributed Gaussian lossy compression problem by coupling it to the CEO problem.
- Wang-Chen-Wu’10: a simple converse on the sum rate.
- Courtade-Weissman’14: the rate-distortion regions of the distributed source coding and the CEO problem under logarithmic loss.
Sum rate - distortion function

Definition

An \((R, d, t)\) causal CEO code: \(K\) causal encoders operating at sum rate \(R\) and a causal decoder that achieve distortion \(d\) over time horizon \(t\).

Definition

The rate-distortion pair \((R, d)\) is achievable at time horizon \(t\) in the CEO problem if \(\forall \gamma > 0, \exists n_0 \in \mathbb{N}\) such that \(\forall n \geq n_0\), an \((R, d + \gamma, t)\) exists. The causal sum rate - distortion function is defined as follows:

\[
R_{\text{CEO}_t}(d) \triangleq \inf \left\{ R : (R, d) \text{ is achievable at time horizon } t \right\}
\]
Notation

- $X_{[t]} \triangleq (X_1, \ldots, X_t)$
- $U^k_{[t]} \triangleq (U^k_1, \ldots, U^k_t)$ (codewords by k-th encoder up to time t)
- $U^K_{[t]} \triangleq \begin{bmatrix} U^1_{[t]} \\ \vdots \\ U^K_{[t]} \end{bmatrix}$
- Massey’s directed information (’90)
 \[I(X_{[t]} \to \hat{X}_{[t]}) \triangleq \sum_{i=1}^{t} I(X_i; \hat{X}_i | \hat{X}_{i-1}) \]
- Causally conditional (Kramer, ’98) probability kernel
 \[P_{Y_{[t]} | X_{[t]}} \triangleq \prod_{i=1}^{t} P_{Y_i | Y_{i-1}, X_i} \]
Main coding theorem

\[R_t \text{CEO}(d) = \inf_{P_{U[K][t]} \parallel Y[K][t]} \prod_{k=1}^{K} P_{U[k][t]} \parallel Y[k][t], \]

\[I \left(Y[K][t] \rightarrow U[K][t] \right), \]

\[\frac{1}{t} \sum_{i=1}^{t} \mathbb{E}[d(X_i, \hat{X}_i)] \leq d \]
Converse

- Data processing
- Chain rule
- Standard single-letterization argument
Achievability

Step \(i \):

\[
\begin{align*}
\text{ENC} & \quad \text{ENC} \\
\downarrow & \quad \downarrow & \quad \downarrow \\
U^k & \quad U^k \quad U^k
\end{align*}
\]

Coded SI

need to consider steps \(\{1, 2, \ldots, t\} \) jointly

Structured multiterminal source coding problem with \(K \cdot t \) encoders and \(t \) decoders
Causal nonasymptotic Berger-Tung bound

- We make use of the achievability proof technique developed by Yassaee, Aref, Gohari, 2013.
- It uses a stochastic likelihood coder.
- The technique extends naturally to causal coding problems.
- We extend Yassaee et al. ’13 to $K > 2$ by proposing a novel decoder that falls into the class of generalized likelihood decoders (Merhav ’17).
Two parts

1. General coding theorem.
2. Explicit fundamental tradeoff in the Gaussian case.
Gauss-Markov source: a simple source with memory

\[X_1, \{V_i\}_{i=1}^{\infty} \sim \mathcal{N}(0, \sigma^2 I_n) \text{ i.i.d.} \]

\[X_{i+1} = aX_i + V_i \]

- \(a = 0 \): i.i.d. Gaussian source
- \(|a| < 1 \): asymptotically stationary source
- \(|a| \geq 1 \): nonstationary source
Gauss-Markov source: a simple source with memory

\[X_{i+1} = aX_i + V_i \]

- V. Kostina and B. Hassibi, "Rate-cost tradeoffs in scalar LQG control and tracking with side information", *Allerton*, 2018.

Causal Gaussian CEO problem

\[X_{i+1} = aX_i + V_i \]
\[V_i \sim \mathcal{N}(0, \sigma_V^2 I) \]

\[W_i^1 \sim \mathcal{N}(0, \sigma_{W_1}^2 I) \]
\[Y_i^1 \]

\[W_i^2 \sim \mathcal{N}(0, \sigma_{W_2}^2 I) \]
\[Y_i^2 \]

\[\ldots \]

\[W_i^K \sim \mathcal{N}(0, \sigma_{W_K}^2 I) \]
\[Y_i^K \]

\[\hat{X}_i \]
Notation: causal MSE estimation

- \(\sigma^2_{X \parallel Y^k} \triangleq \frac{1}{n} \lim_{t \to \infty} \mathbb{E} \left[\left| X_t - \mathbb{E} \left[X_t \mid Y^k_t \right] \right|^2 \right] \)
 observations by \(k \)-th encoder up to time \(t \)

- \(\sigma^2_{X \parallel Y^K} \triangleq \frac{1}{n} \lim_{t \to \infty} \mathbb{E} \left[\left(X_t - \mathbb{E} \left[X_t \mid Y^K_t \right] \right)^2 \right] \)
 observations by all encoders up to time \(t \)
Separation of the causal CEO encoders

\[
Y_{i1} \xrightarrow{\text{ESTIMATOR 1}} \tilde{X}_{i1} \xrightarrow{\text{Q 1}} R_1 \\
Y_{i2} \xrightarrow{\text{ESTIMATOR 2}} \tilde{X}_{i2} \xrightarrow{\text{Q 2}} R_2 \\
\vdots \\
Y_{ik} \xrightarrow{\text{ESTIMATOR K}} \tilde{X}_{ik} \xrightarrow{\text{Q K}} R_K \\
\tilde{X}_i \xrightarrow{\text{DEC}} \hat{X}_i \\
\]

\[\tilde{X}_i^k \triangleq \mathbb{E} \left[X_i | Y_{i[i]}^k \right] \]
Gaussian setting: Main Theorem

The causal sum rate - distortion function is given by

$$\lim_{t \to \infty} R_{CEO_t}(d) = \frac{1}{2} \log \frac{\bar{d}}{d} + \min_{\{d_k\}_{k=1}^{K}} \sum_{k=1}^{K} \frac{1}{2} \log \frac{\bar{d}_k - \sigma^2_{X \| Y^k}}{d_k - \sigma^2_{X \| Y^k} \bar{d}_k} d_k,$$

where

$$\bar{d} \triangleq a^2 d + \sigma^2_V,$$

$$\bar{d}_k \triangleq a^2 d_k + \sigma^2_V,$$

and the minimum is over \(\{d_k\}_{k=1}^{K} \) s.t.

$$\frac{1}{d} \leq \frac{1}{\sigma^2_{X \| Y^K}} - \sum_{k=1}^{K} \left(\frac{1}{\sigma^2_{X \| Y^k}} - \frac{1}{d_k} \right),$$

$$d_k \geq \sigma^2_{X \| Y^k}.$$
Achievability

- Evaluate the directed M.I. in the Main Coding Theorem with

\[U^{k*}_i = \bar{X}^k_i + Z^k_i \]

- This corresponds to quantizing the innovations of the process \(\bar{X}^k_i \) using random coding and binning with Gaussian codebooks.
Causally conditioned directed information (Kramer, ’98)

$$I(X_t \rightarrow \hat{X}_t \, \| \, Z_t) \triangleq \sum_{i=1}^{t} I(X_i; \hat{X}_i \, \| \, \hat{X}_{i-1}, Z_i)$$
Converse

$$R_{CEO, t}(d) \geq \min \left\{ I \left(X_{[t]} \rightarrow U_{[t]}^{[K]} \right) + \sum_{k=1}^{K} I \left(\bar{X}_{[t]}^k \rightarrow U_{[t]}^k \| X_{[t]} \right) \right\}$$

causal rate-distortion function (Gorbunov-Pinsker’74)

causal rate-distortion function with side information (Kostina-Hassibi ’18)

An ingredient:

- Optimal combining of independent Kalman filters:

$$\bar{X}_i = \sum_{k=1}^{K} \frac{\sigma_X^2}{\sigma_X^2 \| Y^{[K]} \}} \bar{X}_i^k ,$$
Causal coding problems are both practically *important* and theoretically *tractable*