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Abstract—Consider a distributed control problem with a
communication channel connecting the observer of a linear
stochastic system to the controller. The goal of the controller
is minimize a quadratic cost function. The most basic special
case of that cost function is the mean-square deviation of the
system state from the desired state. We study the fundamental
tradeoff between the communication rate r bits/sec and the
limsup of the expected cost b, and show a lower bound on
the rate necessary to attain b. The bound applies as long as
the system noise has a probability density function. If target
cost b is not too large, that bound can be closely approached
by a simple lattice quantization scheme that only quantizes
the innovation, that is, the difference between the controller’s
belief about the current state and the true state.

Index Terms—Linear stochastic control, rate-distortion
tradeoff, high resolution, sequential rate-distortion theory,
Shannon’s lower bound.

I. INTRODUCTION
A. System model

Consider the following discrete time stochastic linear
system:

X1 = AXy + BU, + Vi, (1)

where X; € R™ is the state, V; € R" is the process noise,
U; € R™ are deterministic controls, and A and B are fixed
matrices of dimensions n X n and n x m, respectively. See
Fig. 1. At time ¢, the controller observes output G; of the
channel, and chooses a control action U; based on everything
it has observed up to time t. That is, Uy € G;, where G; is
the o-algebra generated by G* = (G, G1, ..., Gy). At time
t, the encoder observes X; and forms a binary codeword Fy,
which is then passed on to the channel. Like the controller,
the encoder has access to the entire history of the data it
has observed. We assume that system noises V7, V5 ... ... are
i.i.d. independent of everything else, distributed the same as
V.
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Fig. 1: The distributed control system.
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B. The rate-cost tradeoff

The efficiency of a given control law at time ¢ is measured
by the linear quadratic regulator (LQR) cost function:
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where Q > 0 (positive semidefinite), R > 0 and S;1; > 0
are matrices satisfying either of the following conditions:
(a) Either R > 0, or
(b) Q > 0 and rank B = n.
In the special case Q = I,, R=0 and S;y; = |,,, the cost
function in (2) is the average mean-square deviation of the
system from the desired state O,

t+1
> HXiHZ] :
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More generally, the LQR cost balances between the deviation
of the system from the desired state 0, and the required
control power defined with respect to the norms induced by
the matrices Q, R and S;4;.

For t > 0 and r > 0, consider the following optimization
problem:
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where I(F;; G;|G*~1) is the mutual information between F;
and G; given the history of observed channel outputs, G*~1.
The following information-theoretic quantity will play a
central role in determining the operational fundamental limits

of control under communication constraints.

Definition 1 (rate-cost function). The rate-cost function is
defined as

R(b) £ min {r: limsup B, (r) < b} . )

t—o0

In this paper, we will show a simple lower bound to
the rate-cost function (5), and we will show that (5) is
linked to the minimum data rate required to keep the system
at LQR cost b, over both noiseless and noisy channels.
Furthermore, we will demonstrate that our lower bound can
be closely approached by a simple variable-length lattice-
based quantization scheme that transmits only the innovation.
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C. Prior art

The analysis of control under communication constraints
has a rich history. The first results on the minimum data rate
required for stabilizability appeared in [3], [4]. These works
analyze the evolution of a scalar plant from a worst-case
perspective. In that setting, the initial condition of the plant
Xy is assumed to belong to a bounded set, the process noise
V1, Va5, ... is assumed to be bounded, and the plant is said
to be stabilizable if there exists a (rate-constrained) control
sequence such that the worst-case deviation of the system
state from the target state 0 is bounded: lim sup,_, . || X:|| <
oo. In [3], [4], it was shown that a fully observed unstable
scalar plant

Xip1 =aXe + U + Vs, (6)

where a > 1 and Xy, U, and V; are scalars, can be kept
bounded by quantized control if and only if the available
data rate exceeds log a bits per sample. Tatikonda and Mitter
[5] generalized this result to vector systems; specifically, they
showed that the necessary condition for a fully observed
vector plant to be stabilizable is

> log|A(A),

i A (A)[>1

r > @)

where the sum is over the unstable eigenvalues of A, i.e.
those eigenvalues whose magnitude exceeds 1. Compellingly,
(7) shows that only the nonstable modes of A matter; the
stable modes can be kept bounded at any arbitrarily small
quantization rate (and even at zero rate if v, = 0). In a
setting without system noise, Yiiksel and Bagsar [6] showed
that variants of (7) remain necessary under three different
stability criteria. Using a volume-based argument, Nair et
al. [7] showed a lower bound to quantization rate in order
to attain limsup,_, . || X¢|| < d, thereby refining (7). Nair
et al. [7] also presented an achievability scheme confirming
that for scalar systems, that bound is tight.

Nair and Evans [8] showed that Tatikonda and Mitter’s
condition on the rate (7) continues to be necessary and
sufficient in order to keep the mean-square deviation of the
plant state from 0 bounded, that is, in order to satisfy

limsup E [[|X¢[|*] < oo. ®)
t—o00

The power of Nair and Evans’ result [8] is that unlike the
results of [3]-[7], it applies to systems with unbounded
process and observation disturbances. Nair and Evans’
converse bound [8] applies to fixed-rate quantizers, that is,
compressors whose outputs can take one of 2" values. Time-
invariant fixed-rate quantizers are unable to attain bounded
cost [8]. Yiiksel [9], [10] considered fixed-rate quantizers
with adaptive bin sizes and showed that there exists a unique
invariant distribution for the system state and the quantizer
parameters in [9], and studied the existence and the structure
of optimal quantization and control policies in [10].

For average rate quantization, Silva et al. [11] noticed that
the rate of a quantizer embedded into a feedback loop of

a control system is lower bounded by the directed mutual
information from its output to the input. As discussed in
[11], the bound is approached to within 1 bit by a dithered
prefix-free quantizer, a compression setting in which both the
compressor and the decompressor have access to a common
dither - a random signal with special statistical properties.
Going beyond mean-square stabilizability, consider a
dynamic system in (1) with quadratic cost (2), which involves
an energy cost in addition to the cost on the deviation of
the state from the target. In the absence of communication
constraints, the minimum cost can be written as

bt min = IBt (OO)

©))

The minimum quadratic cost due to the system noise
attainable in the limit of infinite time can be expressed

as (e.g. [12])

bmin = lim sup by min = tr(Zy'S), (10)
t—o0
where
o S is the solution to the algebraic Riccati equation

S=Q+AT(S—M)A, (11)

L £ (R+B”sB)"!B'S, (12)

M2 LT(R+ BTSB)L (13)

= SB(R + B'SB)'B”S. (14)

e Xy is the covariance matrix of each of the Vi, Vs, .. .,
Sy EE[(V-E[V)(V-E[V)']. 15

The setting in which both the system noise and the
observation noise are Gaussian, and the cost is the LQR
cost in (2), is known as linear quadratic Gaussian (LQG)
control. The optimal performance of vector quantization for
the LQG control was first studied by Fischer [13], who
showed that the optimal performance can be attained by
first estimating and then quantizing the state, and that the
minimum attainable cost decomposes into an unquantized
LQG cost and a quantization cost:

IEBt (T‘) = bt min + ]D)t (7”'),

where D, (r) is the minimum normalized accumulated distor-
tion in sequential quantization of the state estimates. We say
that a quantizer is sequential if its output at each time instant
can depend on the entire history up to that time instant but
cannot depend on the future. This causality constraint arises
naturally in the dynamic control setting of Fig. 1.

The function D;(r) is challenging to evaluate exactly,
and no closed-form expression is known for it. Moreover,
strategies that attain (16) are in general complicated: e.g.,
Fu [14] gave examples illustrating that quantizers designed
to minimize the distortion at current step do not generally
attain the optimal performance.

In the context of a fully observed LQG system with
communication constraints, Tatikonda et al. [15] noticed that
Dy (r) is closely tied to the causal rate-distortion function,

(16)



an information-theoretic quantity introduced decades earlier
by Gorbunov and Pinsker [16]. Using information-theoretic
tools enabled by that important observation, Tatikonda et al.
[15] obtained a formula for the function R(b) (defined in
(5)) for a scalar Gaussian system:

R(b) = . an

+

log |a| + %log (1 + I\/IVar[V])

b— bmin

where | - |, £ max(0,-), and M > 0 is the scalar given by
(14). The right side of (17) is lower bounded by [log |al| .,
thus at least log |a| bits per time unit is necessary to attain a
bounded LQR cost in an unstable (|a| > 1) Gaussian system.

Leveraging the high resolution quantization results of
Linder and Zamir [17], Tatikonda et al. [15] argued that for
any time horizon ¢, the ratio of normalized output entropy of
the best sequential quantizer, + H(F"), over the functional
inverse of (4) converges to 1 as b | byin,. Tatikonda et
al. [15] also observed that (17) can be achieved without
delay over a special Gaussian channel that is probabilistically
matched to the statistics of V7, V5, ... and the target cost b.
An expression for R(b) for vector Gaussian systems is also
put forth in [15], however its proof appears to contain a gap.

For vector Gaussian systems with scalar observation
and control signals, Silva et al. [18] recently showed that
sequential rate-distortion function is attained by Gaussian
transition probability kernels. Silva et al. [18] also computed
a lower bound to the minimum rate and proposed a dithered
quantization scheme that performs within 1.254 bits from
it. For vector Gaussian systems, Tanaka et al. [19] proposed
a semidefinite program to evaluate the Gaussian sequential
rate-distortion function.

D. Our contribution

In this paper, we show a lower bound to R(b) of a fully
observed system, which holds as long as the system noise
V} is continuous. We do not require the noise to be bounded
or Gaussian. If the system is scalar and the system noise is
Gaussian, the new bound reduces to (17). We also show that
(7) remains necessary to keep the LQR cost bounded, even
if the system noise is non-Gaussian, generalizing previously
known results. Although our converse lower bound holds
for a general class of codes that can take full advantage of
the memory of the data observed so far and that are not
constrained to be linear or have any other particular structure,
we show that the new bound can be closely approached
within a much more narrow class of codes. Namely, a simple
variable-rate quantization scheme that uses a lattice covering
and that only transmits the difference between the controller’s
estimate about the current system state and the true state
performs within a fraction of a bit from the lower bound,
with a vanishing gap as b approaches by,;,. Unlike previously
proposed strategies, our scheme does not use the dither.

E. Technical approach

The main idea behind our approach to show a converse
(impossibility) result is to recursively lower-bound distortion-

rate functions arising at each step. We apply the classical
Shannon’s lower bound to distortion-rate function [20], which
bounds the distortion-rate function X in terms of the entropy
power of X, and we use the entropy power inequality [21],
[22] to split up the distortion-rate functions of the sums of
independent random variables. Since Shannon’s lower bound
applies as long as the source random variable has a density,
our technique circumvents a precise characterization of the
distribution of the state at each time instant. The technique
also does not restrict the system noises to be Gaussian.

To show that our bound can be approached at high rates,
we build on the ideas from high resolution quantization
theory. A pioneering result of Gish and Piece [23] states that
in the limit of high resolution, a uniform scalar quantizer
incurs a loss of only about 1log, 2Z¢ ~ 0.254 bits per
sample. Ziv [24] showed that regardless of target distortion,
the normalized output entropy of a dithered scalar quantizer
exceeds that of the optimal vector quantizer by at most
%log 41%6 ~ 0.754 bits per sample. A lattice quantizer
presents a natural extension of a scalar uniform quantizer
to multiple dimensions. The advantage of lattice quantizers
over uniform scalar quantizers is that the shape of their
quantization cells can be made to approach a Euclidean ball
in high dimensions. Indeed, relying on a fundamental result
by Rogers [25] and crediting Poltyev, Zamir and Feder [26,
(25)] showed that the logarithm of the normalized second
moment of the best n-dimensional lattice quantizer converges
to that of a ball, log 2%@ at a speed O 10ng . The works of
Gersho [27], Zamir and Feder [28] and Linder and Zeger [29]
established that the entropy rate of dithered lattice quantizers
converges to Shannon’s lower bound in the limit of vanishing
distortion.

While the presence of a dither signal both at the encoder
and the decoder greatly simplifies the analysis and can
improve the quantization performance, it also complicates
the engineering implementation. In this paper, we do not
consider dithered quantization. Neither do we rely directly
on the classical heuristic reasoning by Gish and Piece [23].
Instead, we use a non-dithered lattice quantizer followed by
an entropy coder. To rigorously prove that its performance
approaches our converse bound, we employ a recent upper
bound [30], [31] on the output entropy of lattice quantizers
in terms of the differential entropy of the source, the target
distortion and a smoothness parameter of the source density.

FE. Paper organization

In Section II, we state and discuss our results. Section III
presents the proof of the main converse result.

II. RESULTS

Our results are expressed in terms of the entropy power
of the system and observation noises. The entropy power of



an n-dimensional random vector X is defined as'

1 2
N(X)& — —h(X
()2 g (20030
where h(X) = — [z, fx(x)log fx (z)dz is the differential
entropy of X, and fx(-) is the density of X with respect
to the Lebesgue measure on R™.
The entropy power satisfies the following inequalities:

(18)

1 1
N(X) < (detXx)™ < —Var[X] (19)
n
where the variance of X can be written as
Var [X] =E [|X —E[X][]’] =trZx. (20)

The first equality in (19) is attained if and only if X

is Gaussian and the second if and only if X is white.

Thus, N(X) is equal to the normalized variance of a white
Gaussian random vector with differential entropy h(X).

Our first result is a lower bound on the rate-cost function.

Theorem 1. At any LOR cost b > by, the rate-cost function
is bounded below as follows.

o Ifrank B =n, then

R(b) > log|det A| + glog (1 +

N(V)|det M|=
(b - bmin)/n .

(21
o More generally, if (A, B) is controllable, then
R() > > log|Xi(A)]. (22)
it [Ai(A)[=1
Applying
I(Fy; G|G'™Y) < H(F|G'™), (23)

where H(:|-) is the conditional entropy, to (4), we see that
the rate-cost function provides a lower bound on the output
entropy of a quantizer achieving cost b. Furthermore, since
the minimum encoded average length L*(X) in lossless
compression of an object X is bounded as [1], [2]

L*(X) +log(L*(X) +1) +loge > H(X) > L*(X),
(24)

the rate-cost function provides a converse (impossibility)
bound on the minimum average compression rate compatible
with target cost b.

Theorem 1 also gives a bound on the minimum capacity
of the channel F; — G, compatible with target cost b in
the setting where the channel F; — G introduces random
noise.

The right-hand side of (21) is a decreasing function of
b, which means that the controller needs to know more
information about the state of the system to attain a smaller

All log’s and exp’s are common arbitrary base specifying the information
units.
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Fig. 2: The minimum quantizer entropy compatible with cost b in
system (1) with parameters n =1, A=2,B=Q=R =1,V
has Laplace distribution with variance 1.

target cost. As an important special case, consider the rate-
cost tradeoff where the goal is to minimize the mean-square
deviation from the desired state 0. Then, Q = 1,,, R =0,
S =M =l,, bnin = Var [V], and (21) particularizes as

R(b) > log |det A| + glOg <1 + (b—\]zi(rv[‘)/])/n) '
(25)

In another important special case, namely Gaussian V, (21)
particularizes as

1
n

|det ZvM
(b - bmin)/”) . (26)

In a pleasing confluence, for the scalar system, (26) coincides
with (17).

A typical behavior of (25) is plotted in Fig. 2 as a function
of target cost b. As b | 0, the required rate R(b) 1 oo.
Conversely, as b 1 oo, the rate monotonically decreases and
approaches log | det A|. The rate-cost tradeoff provided by
Theorem 1 can serve as a gauge for choosing an appropriate
communication rate in order to meet the control objective.
For example, in the setting of Fig. 2, decreasing the data
rate below 1 nat per sample incurs a massive penalty in cost,
because the rate-cost function is almost flat in that regime.
On the other hand, increasing the rate from 1 to 3 nats per
sample brings a lot of improvement in the attainable cost,
while further increasing it beyond 3 nats results in virtually
no improvement.

Also plotted in Fig. 2 is the output entropy of a variable-
rate uniform scalar quantizer that takes advantage of the
memory of the past only through the innovation, i.e. the
difference between the controller’s prediction of the state at

R(b) > log|det Al + %log <1 +



time ¢ given the information the controller had at time ¢ — 1
and the true state. Its performance is strikingly close to the
lower bound, being within 0.5 nat even at large b, despite the
fact that quantizers in this class cannot attain the optimal cost
exactly [14]. The gap further vanishes as b decreases. The
gap can be further decreased for multidimensional systems
by taking advantage of lattice quantization. These effects are
formally captured by the achievability result we are about
to present, Theorem 2.

Theorem 2 holds under the assumption that the density of
the noise is sufficiently smooth. Specifically, we adopt the
following notion of a regular density.

Definition 2 (Regular density, [32]). Let ¢ > 0, ¢; > 0.
Differentiable probability density function fx of a random
vector X € R" is called (cg, c1)-regular if

IVIix @) < (cillzll + co) fx (x), Ve eR™ (27)

A wide class of densities satisfying smoothness condition
(27) is identified in [32]. Convolution with Gaussians pro-
duces a regular density: more precisely, the density of B+ Z,
with B 1L Z and Z ~ N(0,0%1), is (ZE[|B]], %)-
regular. > Likewise, if the density of Z is (cg, c;)-regular,
then that of B + Z, where ||B|| < b as., B 1 Z is

(co + c1b, c1)-regular.

Theorem 2. Consider the fully observed linear stochastic
system (1). Suppose that rank B = n and V' has a regular
density. Then, any LOR cost b > by, is attainable by a
quantizer whose output entropy is

N M|
H(b) < log|det A| + glog (1 + V)det|>

(
b— bmin)/n
+ Ol(logn) + 02 ((b - bmin) ) )

where O1(logn) < Cylogn and Oz(§) < Comin{&, ca}
for some nonnegative constants Cy, Cs and cs.

—~

N

(28)

Proof. An innovation-based variable-rate lattice scheme
achieving (28) and its analysis is presented in the extended
version [33]. O

The first two terms in (28) match the first two terms in
(21). The O;(logn) term is the penalty due to the shape
of lattice quantizer cells not being exactly spherical. The
O ((b — bmin)%) is the penalty due to the distribution of
the innovation not being uniform. It becomes negligible for
small b— by, and the speed of that convergence depends on
the smoothness parameters of the noise density. Due to (24),
Theorem 2 implies the existence of a variable-rate quantizer
with rate bounded by the right side of (28) that attains LQR
cost b.

Theorem 1 gives a lower (converse) bound on the output
entropy of quantizers that achieve the target cost b, without

2Notation B 1L Z reads “B is independent of Z”.

making any assumptions on the quantizer structure and
permitting the use of the entire history of observation data.
Theorem 2 proves that the converse can be approached by a
strikingly simple quantizer coupled with a standard controller,
without common randomness (dither) at the encoder and the
decoder.

III. PROOF OF THEOREM 1

We start by introducing a few crucial definitions and tools,
some classical, some novel, that form the basis of our proof
technique.

The traditional distortion-rate function is defined as
follows.

Definition 3 (Distortion-rate function). Let X € R" be a
random variable. The distortion-rate function at rate r is
defined as the solution to the following convex optimization
problem:

D,(X) £

_ min E [(X ~X)T(X - X’)} .9
X: I(X;X)<r

The conditional distortion-rate function with side information
Y at both the encoder and the decoder is defined as:

D (X|Y)2 min E {(X ~X)T(X - X)} .
X: I(X;X|Y)<r

(30)

The difference between (29) and (30) is that in the latter
case, an additional information, Y, is available at the encoder
and the decoder. By Jensen’s inequality,

D, (X) > D (X]Y). 3D

Conditional distortion-rate functions will be useful for us
because both the encoder and the controller have access to
the past history.

We introduce the distortion-rate function with respect to
the weighted mean-square distortion as follows.

Definition 4 (Distortion-rate function with respect to a
weighted mean-square error). Let X € R" be a random
variable, and M be an n X n positive semidefinite matrix.
The distortion-rate function with respect to a weighted mean-
square error at rate r is defined as the solution to the

following convex optimization problem: 3
D.m(X)=  min
F,G, X:

X-F-G-X:
I(F;G)<r

E [(X ~X)TM(X - X)} 32)

The corresponding conditional distortion-rate function with

side information is defined as:
D, m(X|Y) £ min
F,G,X:

X-F-G-X:

I(F;G|lY)<r

E [(X ~X)TM(X — X)} .

(33)

3We writg X-F-G-Xto designate that the random variables X,
F, G and X form a Markov chain in that order.



The following Proposition links the functions in Defini-
tions 3 and 4.

Proposition 1. Let X € R™ be a random variable, and let
L be an m x n matrix. The following equalities hold.

D’I‘(LX) = Dr, LTL(X) (34)
DT(LX|Y) = Dr, LTL(X|Y) (35)
Proof. See extended version [33]. L]

The following tool will be instrumental in our analysis.

Theorem 3 (Shannon’s lower bound [20]). The distortion-
rate function is bounded below as

Dy (X) = D, (X) (36)

(37)

If X is a white Gaussian vector, (36) holds with equality.
Thus, (36) states that the distortion-rate function of X is
lower bounded by the distortion-rate function of a white
Gaussian vector with differential entropy h(X).

Although beyond Gaussian X, Shannon’s lower bound is
rarely attained with equality [34], it is approached at high
rates; specifically, according to Linkov [35], under regularity
conditions, D, (X)

. s
A ) T

If X € R™ does not have a density, then N(X) = 0 and
the bound in (36) is trivial.

To apply Shannon’s lower bound to distortion-rate prob-
lems with a weighted mean-square error, we combine
Proposition 1 and Theorem 3:

(38)

D, 7 (X) =2 D, (7 (X) (39)
£ D, (LX). (40)

If L is square, the entropy power scales as
N(LX) = |det L|* N(X), (41)

providing a convenient expression for D,.(LX) in terms of
the entropy power of X.

Another essential component of our analysis, the entropy
power inequality, was first stated by Shannon [21] and proved
by Stam [22].

Theorem 4 (Entropy power inequality [21], [22]). If X and

Y are independent, then
NX+Y)>NX)+N(Y). (42)

Equality in (42) holds if and only if X and Y are Gaussian
with proportional covariance matrices.

Unlike the traditional rate-distortion theory setting in
which the compressor’s actions cannot affect the data, in
data compression for control, the controller’s action at the
current time step creates the data to be compressed at the
next step. The following bound to the distortion-rate function
minimized over the data to be compressed will be vital in
proving Theorem 1.

Proposition 2. Let X € R" be a random variable. The
following inequality holds:

min

D.(X + UU) > D, (X).
UeR™: I(X;U)<s ( + | )_ +( )

(43)

Proof. Write

min ]DT(X+U1‘U1)
Uy: I(X;U1)<s

min E[IX + U+ U2?] (44

= min

Uy: Us:
I(X;U1)<s I(X+Uy;U2|Up)<r

> min E[|IX + Uy + Us|?] (45)
Ul,Ugl
I(X;U1,Uz)<r+s
=D,4s(X), (46)
where (45) holds because I(X + Uy; Us|Uy) = I(X; Us|Uy)
and I(X;U1)+I(X;U2|U1):I(X;Ul,Ug). O

Using relations (34) and (35), we note that (43) implies
Do m(X +UU) > Dypys m(X).

min

(47)
UeR™: I(X;U)<s

Remark 1. Since Shannon’s lower bound is equal to the
distortion-rate function of a white Gaussian vector with the
same differential entropy as the original vector, the relation
shown in Proposition 2 also holds between the corresponding
Shannon lower bounds:

D’I",M(X + U|U) 2 DerS’M(X).

min

(48)
UeR™: I(X;U)<s

We are now fully equipped to prove Theorem 1.

Proof of Theorem 1. Here, we prove (21). We refer the
reader to the extended version [33] for the proof of (22).
Without loss of generality, assume that E [Xo] = E [V] = 0.
We consider the finite horizon problem in which the system
operates for ¢ time steps and the goal is to minimize the
quadratic cost function in (2). To find a lower bound to
the minimum attainable cost B;(r), we apply the dynamic
programming principle.
Fix ¢t > 1. For ¢ < t, denote for brevity

i

by 2E | (X]QX; + U/RU)) | +E[X]},Sit1Xi4]

7=0
(49)
L; 2 (R+B”s; ;B)~'BTS,, 1, (50)
M; £S;,1B(R+B*S;;1B)"'B”S; 51
= L7(R+B”S,,1B)L,, (52)



where S;, i < t is the solution to the discrete-time Ricatti
recursion,

Si =Q+A"(Siy1—

and S;; is that in (2).

Suppose that the controls Uy, ..., U;_1 have already been
chosen, producing the random variable X; at the output of
the system at time ¢. Denote by J;(X;) the minimum (over

M;) A, (53)

Ui, ...,U;) expected cost at time ¢, given a fixed choice of
Up,...,U;i1.*
The expected cost at time ¢ + 1 for given Uy, ... U; is
Ji1(Xiq1) = by (54)
To find J;(X;), we optimize Jy41(X¢y1) over Uy:
Ji(Xy)
£ min Ji1(AX, + BU; + V; 55
[}flellglt 1+1(AX, +BU + V) (55)

UGy

t—1
=E | Y (X]QX; +U/RU;)| + min E[X/QX,
j=0

+ U/ RU + (AX; + BU; + V) TS0 (AX; + BU; + V3)]
=b, +E V'S V] (56)

+ min E[(L,AX, + U)" (R+ BTS,,1B) (LLAX, + U,)]

> b +tr (ZySi1) + D, R+BTSt+1B<LtAXt|Ut_1)> (57)

where

e (56) is obtained by completing the squares in the
standard way, see e.g. [12].

e (57) holds because E [VtTStH Vt] =tr(XySey1), and
because by Proposition 1, (31) and Shannon’s lower
bound (Theorem 3), the minimum with respect to Uy
in the left side of (57) is lower bounded by

> D, R+BTSt+1B(I—tAXt‘Ut_1)- (58)

Note that (58) holds regardless of whether the entire
history of U!~! is available at both the encoder and
the decoder or at the decoder only.

Continuing the recursion further results in:

Ji—1(Xi—1)

A .
= min
Ui—1€Gt—1

> bi—1 + (tr (ZvSe) + tr (ZvSet))
+ D, riprs,s(Li—1AX_1|U?)
DT’, R+BT5t+1B(LtAXt|Ut71)

Ji(AXi—1 + BU—1 + Vio1) (59

+  min (60)

Ui—1€Gt—1
> b1 + (tr (Zy'St) + tr (v Sit1))
+ D, rigrs,s(Li—1AX;1|U?)

+ Do, rig7s,, .8 (LA X1 [UT?)

+ Dy rys7s,.,8(L:AV) (61)

4As common in information theory, we will abuse the notation slightly
and write J;(X;) even though it is a function of the distribution of X;
only and not of the particular realization of X.

where (60) repeats (57), and (61) is obtained using the
entropy power inequality, (48) and (58) as follows:

D, ri67s,.,8(LA (AXi—1 + BU;—1 + Vi1 |U))
(62)
> Dy, r187s,,,8(LeA (Xio1 + BU 1) (U
+ Dy rys7s,,,8(LLAV) (63)

> Dy, rip7s, . 8(LA°Xi—1|U?) + D, giprs,, 5 (LIAV)
(64)

Backtracking all the way to time 0, we accumulate

Jo(Xo) £ Jmin Jy (AXo + BUy + Vo) (65)
0 0

t
E [XJ'SoXo] + Y tr(TvSit1)
=0

+ Y Dt 1y Re87s, 48 (LA Xo)
=0

£
+ Z ZD]'T, R+87s,4,B(LiATV).

i=0 j=1

(66)

Now, we drop the terms containing X, and apply the
scaling property (41) to continue (66) as follows.

¢
Jo(Xo) > E [XOTSOXO] + Ztr (XvSit1) (67)
i=0

t i .
1 2j 2
0 (detM) T N(V) Y [det Al exp (‘i) |
=0

j=1
Denote for brevity a = | det A|. Note that

oo ()
Zan exp| —— | =
n

j=1

1—exp (=2 (r —loga))
exp (2 (r —loga)) — 1

. (68)

If r < log a, the contribution of the sum containing N (V)
in (67) grows faster than ¢, and so

lim sup B;(r) = 4o0. (69)

t—o00
Consider now the case r > loga. Taking t — oo, we
conclude

lim sup By (r)
t—o0
1 &
> tlggo m ZZ; r(ZvSit1)
i — exp ( 2L (r —loga))
(det M;)
+ t%oo t—|— z% exp (2 (r —loga)) — 1
(70)
> tr(ZyS) + N(V)[det M[~ an

exp ( (r— loga)) 1’
where (71) is by Fatou’s lemma.
Finally, since S > 0 (e.g. [12]) and rank B = n by the
assumption, it follows that det M > 0, and (71) is equivalent
to (21). O



IV. CONCLUSION

We studied the fundamental tradeoff between the com-
munication requirements and the attainable quadratic cost
in the fully observed linear stochastic control system. We
introduced the rate-cost function in Definition 1, and showed
a sharp lower bound to it in Theorem 1. The proof uses
backwards induction and invokes Shannon’s lower bound and
the entropy power inequality to lower bound the cost for any
admissible control sequence. Theorem 2 shows that a variable-
rate lattice-based scheme in which only the quantized value of
the innovation is transmitted approaches the converse result
if the target cost is not too high and the system dimension
is not too small.

It remains an interesting open question whether the
converse bound in Theorem 1 can be approached by fixed-
rate quantization, or over noisy channels. It will be also
interesting to see whether using non-lattice quantizers can
help to narrow down the gap in Fig. 2.
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