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Abstract—This paper formulates an abstract version of
Shannon’s lower bound that applies to abstract sources and
arbitrary distortion measures and that recovers the classical
Shannon lower bound as a special case. A necessary and
sufficient condition for it to be attained exactly is presented.
It is demonstrated that whenever that condition is met, the
d-tilted information of the source adopts a simple, explicit
representation that parallels Shannon’s lower bound. That
convenient representation simplifies the non-asymptotic anal-
ysis of achievable rate-distortion tradeoffs. In particular, if
a memoryless source meets Shannon’s lower bound with
equality, then its rate-dispersion function is given simply by
the varentropy of the source.

Index Terms—Lossy source coding, rate-distortion function,
Shannon’s lower bound, finite blocklength regime, dispersion.

I. INTRODUCTION

In the compression of a memoryless source with single-

letter distribution PX under a single-letter distortion mea-

sure d(·, ·), the minimum achievable source coding rate

R(n, d, ǫ) comparable with blocklength n and the proba-

bility ǫ of exceeding distortion d given by [1]

R(n, d, ǫ) = R(d) +

√

V(d)
n

Q−1 (ǫ) +O

(

logn

n

)

, (1)

where Q is the complementary Gaussian cdf, R(d) is the

rate-distortion function of the source:

R(d) = inf
PY |X : X 7→Y

E[d(X,Y )]≤d

I(X ;Y ), (2)

and V(d) is a parameter we termed the rate-dispersion

function. That parameter quantifies the overhead over the

rate-distortion function incurred by the finite blocklength

constraint. Dropping the remainder term in (1), we obtain

a simple approximation to the minimum achievable coding

rate. That approximation provides good accuracy even at

short blocklengths, as evidenced by the numerical results in

[1].

The rate-distortion and the rate-dispersion function are

given by the mean and the variance of X(X, d), the d-tilted

information, the random variable which is defined as

X(x, d) , log
1

E [exp {λ⋆d− λ⋆d(x, Y ⋆)}] , (3)
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where λ⋆ = −R′(d), and the expectation is with respect

to the unconditional distribution of Y ⋆, the random vari-

able that attains the rate-distortion function, i.e. R(d) =
I(X ;Y ⋆). Thus, both the rate-dispersion and the rate-

distortion function are described in terms of the solution

to the convex optimization problem in (2). Although the

convexity of the problem in (2) often allows for an efficient

numerical computation of its optimum [2], closed-form

expressions are rarely available.

The absence of an explicit expression for the d-tilted

information motivates a closer look into the behavior of (3).

This paper shows a necessary and sufficient condition for

X(x, d) = log
1

fX(x)
− φ(d) (4)

to hold, where φ(d) is a term that depends only on the

distortion measure and distortion threshold d, and fX is

the probability density function defined with respect to

an appropriate base measure. For continuous X , the base

measure can be taken to be the Lebesgue measure, and fX
then is the usual probability density function. For discrete

sources, fX in (4) particularizes to the probability mass

function of X :

X(x, d) = log
1

PX(x)
− φ(d) (5)

The value of X(x, d) can be loosely interpreted as the

amount of information that needs to be stored about x in

order to restore it with distortion d [1]. The explicit nature

of (4) illuminates the tension between the likelihood of x

and the target distortion: the likelier realization x is, the

fewer bits are required to store it; the lower tolerable d is,

the more bits are required in order to represent the source

with that distortion.1 We stress that this intuitively pleasing

insight is not afforded by the general formula (3).

Whenever (4) holds for the single-letter distribution of a

memoryless source, one can insert (4) into (1) to conclude

that in those cases, the nonasymptotic fundamental limit is

given simply by

R(n, d, ǫ) = R(d) +

√

V
n
Q−1 (ǫ) +O

(

logn

n

)

, (6)

where R(d) is Shannon’s lower bound, and V is the varen-

tropy of the source.

1φ(d) is strictly increasing in d.
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To gain further insight into the form of (4), recall that

Shannon’s lower bound [3] states that the rate-distortion

function is bounded below by the difference between the

(differential) entropy of the source, and a term φ(d) that

depends only on the distortion measure and distortion

threshold d. Thus Shannon’s lower bound is given by the

expectation of (4). Due to its simplicity and because it

becomes increasingly tight in the limit of low distortion [4],

[5], Shannon’s lower bound is often used as a convenient

proxy for R(d).
In this paper, we formulate an abstract Shannon’s lower

bound, which encompasses the original Shannon’s lower

bound as a special case and which does not impose any

symmetry conditions on the distortion measure. We show

that the abstract Shannon lower bound holds with equality if

and only if (4) also holds. Thus, Shannon’s lower bound has

far-fledging implications and connections in the nonasymp-

totic analysis of lossy source coding that we explore in this

paper. In particular, a nonasymptotic version of Shannon’s

lower bound is closely linked to a certain binary hypothesis

test and to a covering of the high probability set of source

realizations with distortion d-balls.

According to a classical result by Pinkston [6], for dis-

crete sources with difference distortion measures, Shannon’s

lower bound is satisfied with equality in the range 0 ≤ dc,

where dc > 0 is a function of PX only. Our necessary and

sufficient condition implies that (5) and (6) also always hold

for these sources. Leveraging this insight, we show new sim-

ple finite blocklength bounds for Pinkston’s scenario. The

new bounds lend themselves to a particularly straightforward

second order analysis.

For continuous sources, Shannon’s lower bound holds

with equality only if a peculiar matching between a source

density and distortion measure is present. A companion pa-

per [7] shows that under the mean-square error distortion, as

long as d is small enough and the source density fX satisfies

a smoothness condition, the d-tilted information in X ∈ R
n

is closely approximated by (4), even if Shannon’s lower

bound does not hold with equality. An ArXiv preprint [8]

extends the results of [7] to non-MSE distortion measures.

The rest of the paper is organized as follows. Section II

introduces the abstract Shannon lower bound. Section III

presents the necessary and sufficient condition for (4) to

hold. Leveraging the tightness of Shannon’s lower bound

in a range of low distortions, Section IV shows new finite

blocklength bounds for a discrete memoryless source with

a difference distortion measure, together with their second

order analysis.

II. SHANNON’S LOWER BOUND

The (informational) rate-distortion function is defined for

random variable X ∈ X and distortion measure d : X ×
Y 7→ R+ as the solution to the convex optimization problem

in (2). The function in (2) admits the following parametric

representation.

Theorem 1 (Parametric representation of R(d), [9]). Sup-

pose that the following basic assumptions are satisfied.

(a) R(d) is finite for some d, i.e. dmin < ∞, where

dmin , inf {d : R(d) < ∞} . (7)

(b) The distortion measure is such that there exists a finite

set E ⊂ Y such that

E

[

min
y∈E

d(X, y)

]

< ∞. (8)

For each d > dmin, it holds that

R(d) = max
g(x), λ

{−E [log g(X)]− λd} , (9)

where the maximization is over g(x) ≥ 0 and λ ≥ 0
satisfying the constraint

E

[

exp (−λd(X, y))

g(X)

]

≤ 1 ∀y ∈ Y. (10)

Remark 1. The maximization over g(x) ≥ 0 in (9) can be

restricted to only 0 ≤ g(x) ≤ 1 [9]. Equality in (10) holds

for PY ⋆ -a.s. y.

Remark 2. The d-tilted information (defined in (3), [1]) can

be alternatively defined as

X(x, d) = − log g(x)− λ⋆d, (11)

where the pair (g(·), λ) attains the maximum in (9). So,

R(d) = E [X(X, d)] . (12)

Furthermore, if the infimum in (2) is attained by some Y ⋆,

then

g(x) = E [exp (−λ⋆
d(x, Y ⋆))] (13)

leads to the definition in (3).

For finite alphabet sources, a parametric representation of

R(d) is contained in Shannon’s paper [3]; both Gallager’s

[10, Theorem 9.4.1] and Berger’s [11] texts contain para-

metric representations of R(d) for discrete and continuous

sources. However, it was Csiszár [9] who gave rigorous

proofs of (9) in the following much more general setting:

X belongs to a general abstract probability space, and the

existence of the conditional distribution PY ⋆|X attaining

R(d) is not required.

Here, we leverage the result of Csiszár to state a gener-

alization of Shannon’s lower bound to abstract probability

spaces.

Each choice of λ ≥ 0 and g satisfying (10) gives rise to a

lower bound to R(d). Shannon’s lower bound corresponds

to a particular choice of (λ, g).
Let µ be a measure on X such that the distribution of X is

absolutely continuous with respect to µ. Denote the density

of the distribution of X with respect to µ (Radon-Nikodym

derivative) by

fX(x) ,
dPX

dµ
(x). (14)
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Σ , sup
y∈Y

∫
exp(−λd(x, y))dµ(x)

=

∫
exp(−λd(x, yλ))dµ(x)

dPX|Y ⋆=y

dµ
(x) ,

exp(−λd(x, y))∫
exp(−λd(x, y))dµ(x)

φµ(d) , log Σ + λd

g(x) = fX(x)Σ

λ > 0: arbitrary

TABLE I: The choice of (g(x), λ) in (9) that leads to the abstract
Shannon’s lower bound in Theorem 2.

The differential entropy with respect to µ can be defined as

hµ(X) , −
∫

dµ(x)fX(x) log fX(x) (15)

= −D(fX‖µ). (16)

If X is a continuous random variable, a natural choice

for µ is the Lebesgue measure. Then, the density in (14)

is known as the probability density function, and hµ(X) is

simply h(X), the differential entropy of X . If X is a discrete

random variable, a natural choice for µ is the counting

measure. Then, the density in (14) is the probability mass

function, and hµ(x) is equal to H(X), the entropy of X .

It is easy to verify that the choice of λ and g in Table I

satisfies (10). The generalization of Shannon lower bound

to abstract spaces and arbitrary distortion measures can now

be stated as follows.

Theorem 2 (abstract Shannon’s lower bound). Fix a mea-

sure µ such that the distribution of X is absolutely contin-

uous with respect to µ. For all d ≥ dmin,

R(d) ≥ hµ(X)− φµ(d). (17)

Theorem 2 provides a family of lower bounds parameter-

ized by the choice of base measure µ. In classical versions

of Shannon’s lower bound, µ is a Lebesgue measure (or

a counting measure, if the alphabet is discrete) and the

distortion measure satisfies a symmetry condition, so that the

integral in the definition of Σ in Table I does not depend on

the choice of y. Shannon’s original derivation [12] applied to

continuous sources under the mean-square error distortion,

and it did not use a parametric representation of R(d). A

decade later, Pinkston [6] derived a version of the bound

for a finite alphabet source with a distortion measure such

that all the columns of the per-letter distortion matrix d(x, y)
consist of the same set of entries. A generalization of the

discrete Shannon lower bound to distortion measures not

satisfying any symmetry conditions is put forth by Gray

[13]. The new bound in Theorem 2 is more general than

these results and recovers them as special cases.

The right-side of (17) can be made equal to R(d) by

choosing µ as follows:

dµ

dPX

(x) = exp (X(x, d)) . (18)

To verify that the choice in (18) results in equality in (17),

observe that

hµ(X) = E [X(X, d)] , (19)

and that

φµ(d) = logΣ + λd (20)

= sup
y∈Y

logE [exp (−λd(X, y) + X(X, d))] + λd

(21)

= 0, (22)

where to obtain (22) we used (10), (11) and Remark 1.

The long-standing appeal of Shannon’s lower bound is

that one can obtain a tight bound on the rate-distortion

function even without the knowledge of the distribution that

attains it, as (18) demands. For an illustration of such a

calculation, suppose that X is a set endowed with a group

operation, “+′′, satisfying the group axioms. Then, it makes

sense to talk about x + y and x − y = x + (−y), where

−y is the inverse of y (according to the group operation).

Distortion measures of the form

d(x, y) = d(x− y) (23)

are called difference distortion measures. If X = R
n and

d is a difference distortion measure, then letting µ be the

Lebesgue measure, we obtain

Σλ =

∫

exp(−λd(x− y))dx, (24)

regardless of the choice of y. So, we may set y = 0, and

obtain a particularly elegant form of the abstract Shannon

lower bound - see Table II.

In the same fashion, if X is a discrete group, letting µ be

the counting measure on X , we notice that

Σ =
∑

x∈X

exp(−λd(x − y)), (25)

for all y ∈ X . Therefore, we may let y = 0 (the identity

element of group X ) and obtain Pinkston’s variant of

Shannon’s lower bound [6]. See Table II.

We proceed to list several examples of the calculation of

Shannon’s lower bound for difference distortion measures.

Example. In the special case of X ∈ R
n and mean-square

error distortion, we recover the original Shannon’s lower

bound [12] as follows. Let d be the mean-square error

distortion:

d(xn, yn) =
1

n
‖x− y‖22. (26)
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Σ ,

∫
exp(−λd(z))dµ(z)

dPZλ

dµ
(z) ,

1

Σ
exp(−λd(z))

φµ(d) , hµ(Zλ) = logΣ + λd

g(x) = fX(x)Σ

λ > 0: solution to equation E [d(Zλ)] = d

TABLE II: The choice of (g(x), λ) in (9) that leads to Shannon’s
lower bound in the case where d is difference distortion measure.
The base measure µ is understood to be the counting measure if
X is a discrete group, and the Lebesgue measure if X = R

n.

A straightforward calculation using Table II reveals that,

λ =
n

2d
log e (27)

φµ(d) =
n

2
log d+

n

2
log(2πe), (28)

so if X is a continuous real-valued random vector of length

n,

R(d) ≥ h(X) +
n

2
log

1

d
− n

2
log(2πe). (29)

Example. For weighted mean-square error distortion mea-

sure,

d(x, y) =
1

n
‖W (x− y)‖22, (30)

where W is an invertible n × n matrix, Shannon’s lower

bound is given by

R(d) ≥ h(X)+
n

2
log

1

d
− n

2
log(2πe)+log | detW |. (31)

Example. Let d be the scaled Lp norm distortion:

d(x, y) = n− s
p ‖x− y‖sp, (32)

where s > 0. A direct calculation using Table II shows that

Shannon’s lower bound is given by

R(d) ≥ h(X) +
n

s
log

1

d
− n

p
logn− log bn,p

+
n

s
log

n

se
− log Γ

(n

s
+ 1
)

, (33)

where bn,p is the volume of a unit Lp ball:

bn,p ,

(

2Γ
(

1
p
+ 1
))n

Γ
(

n
p
+ 1
) . (34)

Example. Assume that the alphabet is finite, |X | = m, and

consider the symbol error distortion

d(z) = 1{z = 0}. (35)

Then,

R(d) ≥ H(X)− h(d)− d log(m− 1). (36)

As it turns out, the abstract Shannon lower bound in

Theorem 2 has a nonasymptotic kin expressed in terms of

the Neyman-Pearson function.

The optimal performance achievable among all random-

ized tests PW |X : A → {0, 1} between measures P and Q

on A is denoted by (1 indicates that the test chooses P ):

βα(P,Q) = min
PW |X :

P [W=1]≥α

Q [W = 1] (37)

Note that the Neyman-Pearson function βα(P,Q) is well

defined even if P and Q are not probability measures.

An (M,d, ǫ) lossy compression code is a mapping P
X̂|X ,

where X̂ takes M values, and

P

[

d(X, X̂) > d
]

≤ ǫ. (38)

In [1] we showed the following converse result.

Theorem 3 (Converse, [1]). Let PX be the source distri-

bution defined on the alphabet X . Any (M,d, ǫ) code must

satisfy

M ≥ sup
µ

β1−ǫ(PX , µ)

supy∈Y µ [d(X, y) ≤ d]
. (39)

where the supremum is over all measures on X .

Note the striking parallels between Theorem 3 and the

abstract Shannon lower bound in Theorem 2. Both bounds

require a choice of the base measure µ. The optimal binary

hypothesis test in (39) is a function of log dµ

dPX
(x) only,

whose expectation is equal to hµ(X), the first term in (17).

Furthermore, by Markov’s inequality, the µ-volume of the

distortion d-ball is linked to φµ(d), the second term in (17),

as follows.

µ [d(X, y) ≤ d] =

∫

dµ(x)1 {d(x, y) ≤ d} (40)

≤
∫

dµ(x) exp(λd − λd(x, y)) (41)

≤ sup
y∈Y

∫

dµ(x) exp(λd− λd(x, y)) (42)

= exp(φµ(d)). (43)

III. THE NECESSARY AND SUFFICIENT CONDITION

The following result pins down the necessary and suffi-

cient condition for equality in (17) to hold.

Theorem 4. Assume that the infimum in (2) is achieved by

some PY ⋆|X . Then, the following statements are equivalent.

A. The rate-distortion function is equal to Shannon’s lower

bound,

R(d) = hµ(x)− φµ(d). (44)

B. For PX -a.s. x,

X(x, d) = log
1

fX(x)
− φµ(d). (45)
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C. The backward conditional distribution2 that achieves

R(d) satisfies, for PY ⋆-a.s. y,

dPX|Y ⋆=y

dµ
(x) =

exp(−λd(x, y))

Σ
. (46)

Proof. B ⇒ A is trivial. To show A ⇒ B, note that the

existence of PY ⋆|X that achieves the infimum in (2) implies

differentiability of R(d) [9]. It follows that the maximum

in (9) is attained by a unique g(x) [9]. Since A establishes

that g(x) that attains the maximum in (9) is that in Table I,

B is immediate.

To show B ⇔ C, recall the equivalent representation of

X(x, d) [1]:

X(x, d) = log
dPX|Y ⋆=y

dPX

(x) + λd(x, y)− λd. (47)

Equality in (47) holds for PY ⋆-a.s. y. Comparing (45) and

(47) we conclude the equivalence B ⇔ C.

The necessary and sufficient conditions in Theorem 4

assume a particularly simple form for difference distortion

measures. In that case, statement C can be replaced by

C′. There exists a random variable Y ⋆ such that

X = Y ⋆ + Zλ, (48)

where Y ⋆ is independent of Zλ, and Zλ is defined in

Table II.

Example. If X is equiprobable on a finite group, (44) always

holds. Indeed, in that case, equiprobable Y ⋆ satisfies (48).

Example. Gaussian source with mean-square error distortion

satisfies the conditions of Theorem 4; indeed, X = Y ⋆+Z ,

where X ∼ N (0, σ2 I), Y ⋆ ∼ N (0, (σ2 − d) I) ⊥⊥ Z ∼
N (0, d I).

Theorem 4 extends a result by Gerrish and Schultheiss

[15], who showed that for the compression of a continu-

ous random vector under the mean-square error distortion,

the Shannon lower bound gives the actual value of rate-

distortion function if and only if X can be written as the

sum of two independent random vectors X = Y ⋆+Z , where

Z ∼ N (0, d I). Theorem 4 also generalizes the backward-

channel condition for equality in the Shannon lower bound

given in [11, Theorem 4.3.1]. Unlike these classical results,

Theorem 4 applies to abstract sources and does not enforce

any symmetry assumptions on the distortion measure.

IV. FINITE ALPHABET SOURCES

Most continuous probability distributions do not meet

the conditions of Theorem 4. In particular, an X with

indecomposable distribution cannot satisfy (48), for any

difference distortion measure. In contrast, as the following

result shows, for finite alphabet sources Shannon’s lower

2That is, PX|Y ⋆ such that PXPY ⋆|X = PX|Y ⋆PX .

bound is always attained with equality, as long as target

distortion d is not too large.

Theorem 5 (Pinkston [6]). Let X ∈ X , where X is a group

of order m. Let the distortion measure satisfy (23) and

d(0) = 0, d(z) > 0, z 6= 0. (49)

Then, there exists a dc > 0 such that Shannon’s lower bound

is satisfied with equality for

0 ≤ ∀d ≤ dc. (50)

Example. For symbol error distortion equality in (36) holds

for all

0 ≤ d ≤ (m− 1)minPX(x). (51)

Theorem 5 was obtained by Pinkston [6] for a more

general case in which all rows and columns of the per-letter

distortion matrix d(x, y) consists of the same set of entries

(balanced distortion measure). Gray [13] showed that the

rate-distortion function equals Shannon’s lower bound in

the range of small distortions for stationary ergodic finite

alphabet sources, generalizing and simplifying the proofs of

Gray’s previous results in [16] (binary Markov source with

BER distortion and Gauss-Markov source) and [13] (finite

state finite alphabet Markov sources).

Leveraging the necessary and sufficient conditions in The-

orem 4, we conclude that under the conditions of Theorem

5, the d-tilted information is given by (5), and the output

random variable Y ⋆ that achieves the rate-distortion function

satisfies (48).

Taking advantage of these observations, we proceed to

show simple finite blocklength bounds for the case of finite

alphabet source with difference distortion measures.

Let n be the blocklength. We adopt the notation of [17]:

• type of the string: k = (k1, . . . , km), k1+. . .+km = n

• probability of a given string of type k: pk =
PX(1)k1 . . . PX(m)km

• multinomial coefficient:

(

n

k

)

=
n!

k1! . . . km!
We assume that the distortion measure is of form

d(xn, yn) =
1

n

n
∑

i=1

d(xi − yi) (52)

First, we state a nonasymptotic Shannon’s lower bound.

Theorem 6 (Converse). Let PXn be the source distribution

defined on An, where A is a finite alphabet, and let d be

a separable difference distortion measure, as in (52). Any

(M,d, ǫ) code must satisfy

M ≥ β1−ǫ(PXn , µ)

µ [d(Xn,0) ≤ d]
(53)

where µ is the counting measure.

Proof. Observe that µ [d(Xn, yn) ≤ d] does not depend on

the choice of yn, so we may put yn = 0 in Theorem 3.
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As we will see in Theorem 9, in the range of distortions

where Shannon’s lower bound is tight, an asymptotic anal-

ysis of the converse in Theorem 6 leads to a tighter third

order term than previously known.

To introduce our new achievability result, we recall first

the exact performance of random coding [1]. Denote the

d-ball centered at xn by

Bd(x
n) , {yn ∈ Bn : d(xn, yn) ≤ d} . (54)

Theorem 7 (Achievability [1, Theorem 9]). There exists an

(M,d, ǫ) code with

ǫ ≤ inf
PY n

E [1− PY n(Bd(X
n))]

M
(55)

where the infimization is over all random variables defined

on Bn, independent of Xn.

The right side of (55) gives the exact performance of

random coding. Consequently, it is impossible to tighten

(55) using Shannon’s random coding argument alone. Unfor-

tunately, in general the computation of PY n(Bd(x
n)) in (55)

has exponential in n complexity. Polynomial complexity

lower bounds on PY n(Bd(x
n)) were proposed and com-

puted in [1] individually for the cases of the Gaussian source,

the binary memoryless source and the discrete memoryless

source. In the proof of Theorem 8 below, we present a

new lower bound on PY n(Bd(x
n)) that can be computed in

polynomial time for any discrete memoryless source with a

difference distortion measure as long as the target distortion

is below Pinkston’s critical value dc.

Theorem 8 (Achievability). Let PXn = PX×. . . PX , where

X is defined on a finite alphabet A, and let d be a separable

difference distortion measure, as in (52), satisfying (49).

Suppose that d < dc. There exists an (M,d, ǫ) code that

satisfies

ǫ ≤
∑

k

(

n

k

)

pk

(

1−
(

n

k

)−1(
n

t(k)

) m
∏

a=1

(

ta(k)

ta(k)

)

qt(k)

)M

(56)

where

• p denotes the probability vector PX ;

• q is the probability vector PY ⋆ in (48) (the single-letter

output distribution that achieves the rate-distortion

function);

• t(k) = [nqk], where qk is the output distribution

that achieves the rate-distortion function for the input

distribution 1
n
k, and ta(k) is the a-th entry of t(k) 3;

• the b-th entry of ta is given by 4

[PZλ
(a− b)ta(k)]; (57)

3[·] denotes rounding off to the nearest integer so that the resulting n-
vector is an n-type.

4Rounding off in (57) is carried out so that the resulting vector is
ta(k)-type, and 1

n

∑m
a=1

ta(k)
∑m

b=1
ta,b(k)d(a, b) ≤ d, where ta,b(k)

denotes the b-th entry of ta.

• Zλ is defined in Table II.

Proof. Let PY n = PY ⋆×. . . PY ⋆ . Denote by Ln(k, t, d) the

number of binary strings of type t that lie within d-distortion

d from a given string of type k. In other words, Ln(k, t, d)
is the volume of the intersection of Bd(x

n), where xn has

type k, with type class t.

We have

PY n(Bd(x
n)) =

∑

t

Ln(k, t, d)q
t (58)

≥ Ln(k, t(k), d)q
t(k) . (59)

It is easy to verify that

Ln(k, t, d) ,

(

n

k

)−1(
n

t

)

∑

m
∏

a=1

(

ta

ta

)

(60)

where the summation is over all collections of ta-types ta =
(ta,1, . . . , ta,m) such that

d(xn, yn) =
1

n

m
∑

a=1

ta

m
∑

b=1

ta,b d(a, b) (61)

≤ d, (62)

where the type of xn is k, the type of yn is t, and the

conditional type of xn given yn is ta. Weakening (60)

by keeping only the joint type on the boundary of the

intersection of Bd(x
n) with type class t, we obtain

Ln(k, t(k), d) ≥
(

n

k

)−1(
n

t(k)

) m
∏

a=1

(

ta

ta(k)

)

, (63)

and an application of Theorem 7 concludes the proof.

Particularized to the binary memoryless source with Ham-

ming distortion, the bound in Theorem 8 is plotted in Fig. 1.

Although not as tight as the achievability result from [1] also

plotted in Fig. 1, the advantage of the bound in Theorem 8

is that it applies to all finite alphabet sources with difference

distortion measure as long as d < dc. In contrast, the bound

from [1] is tailored to the binary source with Hamming

distortion. Furthermore, the new bound in Theorem 8 is

dispersion-optimal, and the proof thereof is much simpler

than the prior refined asymptotic analyses of lossy source

coding [1], [18]–[20]. Also plotted in Fig. 1 is the Gaussian

approximation in (6), (65), the original Shannon’s achiev-

ability result [3], and the converse in Theorem 6, which in

this case coincides with the converse in [1, Theorem 20].

We already saw that the dispersion of lossy source coding

is equal to the varentropy of the source whenever Shannon’s

lower bound is tight. The following theorem demonstrates

that this result can be be obtained by a straightforward

analysis of the bounds in Theorems 6 and 7. An added

bonus is a tighter converse bound on the logarithmic term

than previously known.

The coding rate of an (M,d, ǫ) code for an n-dimensional

source is the ratio logM
n

. The minimum coding rate compat-

ible with n, d and ǫ is denoted by R(n, d, ǫ).
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Fig. 1: Bounds to R(n, d, ǫ) and Gaussian approximation for
binary memoryless source with p = 2/5, d = 0.11 , ǫ = 10−2.

Theorem 9 (Second order analysis). Let PXn = PX ×
. . . PX be a probability distribution defined on a finite

alphabet, and let d be a separable difference distortion

measure, as in (52). Suppose that

0 ≤ d < dc, (64)

so that Shannon’s lower bound holds with equality. Then,

the minimum coding rate compatible with blocklength n and

probability ǫ of exceeding threshold d expands as

R(n, d, ǫ) = H(X)− φ(d) +

√

V
n
Q−1 (ǫ) +

1

n
θ (logn) ,

(65)

where V is the varentropy of the source. If d > 0, the

remainder term θ (·) is bounded as

O (1) ≤ θ (logn) ≤ O (logn) , (66)

whereas if d = 0 [1, Theorem 31],

θ (log n) = −1

2
logn+O (1) . (67)

The following result will be useful in the proof of

Theorem 9.

Lemma 1 ( [21, Lemma 1]). Let X1, . . . , Xn be indepen-

dent on A and distributed according to PX . For all n and

all γ > 0, it holds that

P

[

‖type (Xn)− nPX‖2 > n2γ
]

≤ 2|A| exp
(

−n

2

γ

|A|

)

,

(68)

where ‖·‖ denotes the Euclidean norm of its |A|-dimensional

vector argument.

We also use the “reverse Pinsker inequality” [22,

Lemma 6.3]:

D(X‖X̄) ≤ log e

mina∈A PX̄(a)
‖PX − PX̄‖2 (69)

and Stirling’s approximation of the multinomial coefficient:
(

n

k

)

=
C

n
m
2
− 1

2

exp

{

nH

(

k

n

)}

(70)

where C is a constant.

Proof of Theorem 9. Fix 0 < d < dc. To show the converse,

recall that [23, Lemma 58], [1, (251)]

log β1−ǫ(PXn , µn) = nH(X) +
√
nVQ−1 (ǫ)

− 1

2
logn+O (1) . (71)

The converse is immediate from5

log µ [d(Xn,0) ≤ d] = nH(Zλ)−
1

2
logn+O (1) , (72)

where Zλ is defined in (48). We proceed to show (72).

Observe that

µ [d(Xn,0) ≤ d] =
∑

j :∑m
i=1

d(i)ji≤nd

(

n

j

)

(73)

By the definition of Zλ in Table II,

d =

m
∑

i=1

d(i)PZλ
(i). (74)

Consider the integer vector [nPZλ
], where [·] denotes round-

ing off to the nearest integer so that
∑m

i=1 d(i)[nPZλ
(i)] ≤

d. We may re-write (73) as

µ [d(Xn,0) ≤ d] =
∑

∆ :∑m
i=1

d(i)∆i≤0

(

n

[nPZλ
] +∆

)

. (75)

Now, a direct application of [17, (105)] to (75) yields (72).

To show the achievability, we apply (70) to (63) and plug

into (59) to obtain

PY n(Bd(x
n)) (76)

≥ Cn−m−1

2 exp

(

−nD

(

1

n
t(k)‖q

)

+ nφ(d) − nH

(

k

n

))

(77)

Observe that

nH

(

k

n

)

=
n
∑

i=1

log
1

PX(xi)
− nD

(

1

n
k

∥

∥

∥

∥

PX

)

. (78)

The first term in (78) is a sum of i.i.d. random variables

with mean H(X) and variance V . To evaluate the second

term in (78), consider T , the set of typical sentences of xn:

T ,

{

xn ∈ An :

∥

∥

∥

∥

1

n
type (xn)− PX

∥

∥

∥

∥

2

≤ |A| logn
n

}

.

(79)

5At the expense of weakening the lower bound in (66) to − 1

2
logn +

O (1), one can simply apply (43) to evaluate log µ [d(Xn,0) ≤ d] ≤

nH(Zλ).
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According to (68),

P [Xn ∈ T ] ≥ 1− 2|A|√
n
. (80)

Due to the reverse Pinsker inequality in (69), as long as

xn ∈ T ,

D

(

k

n

∥

∥

∥

∥

PX

)

≤ |A| log e
mina∈A PX̄(a)

logn

n
. (81)

Due to (48), t(k) is continuous in k; so, for any xn ∈
T , we may apply the reverse Pinsker inequality again to

conclude

D

(

1

n
t(k)‖q

)

≤ O

(

logn

n

)

. (82)

Applying (68), (81) and (82) to (84), we conclude that

for all xn ∈ T ,

PY n(Bd(x
n)) (83)

≥ exp

(

nφ(d) −
n
∑

i=1

log
1

PX(xi)
+O (logn)

)

(84)

The achievability result is now obtained as follows. Apply-

ing (1−x)M ≤ e−Mx to (55), we conclude that there exists

an (M,d, ǫ) code with

ǫ ≤ E

[

e−MPY n (Bd(X
n))
]

(85)

≤ E

[

e−MPY n (Bd(X
n))1 {Xn ∈ T }

]

+
2|A|√

n
(86)

Finally, we let

logM = H(X)− φ(d) +
√
nVQ−1

(

ǫ− 2|A|√
n

)

+O (logn) , (87)

insert (84) in (86), and apply the Berry-Esseen theorem in

the same manner it is done in [1, (107)–(113)].

V. CONCLUSION

Shannon’s lower bound provides a powerful tool to study

the rate-distortion function. We proposed an abstract Shan-

non’s lower bound (Theorem 2), which applies to sources

defined on general probability spaces with arbitrary distor-

tion measures. We presented the necessary and sufficient

condition for Shannon’s lower bound to be attained exactly

(Theorem 4). Whenever Shannon’s lower bound is attained

exactly, the d-tilted information in x also admits a simple

representation as the difference between the information in

x and a term that depends only on tolerated distortion d (see

(45)). All finite alphabet sources with difference distortion

measures meet Shannon’s lower bound with equality in a

range of low distortions [6]. This implies in particular that

the rate-dispersion function of a discrete memoryless source

with difference distortion measure is given simply by the

varentropy of the source, as long as the target distortion is

low enough. The tightness of Shannon’s lower bound also

leads to simplified finite blocklength bounds.
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