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Abstract—This paper provides a necessary condition good rate-
distortion codes must satisfy. Specifically, it is shown that as
the blocklength increases, the distribution of the input given the
output of a good lossy code converges to the distribution of the
input given the output of the joint distribution achieving the
rate-distortion function, in terms of the normalized conditional
relative entropy. The result holds for stationary ergodic sources
with subadditive distortion measures, both for fixed-length and
variable-length compression. A similar necessary condition is
given for lossy joint source-channel coding.

I. INTRODUCTION

A lossy source coder operating at blocklength k assigns
representation zk to a given block of source outcomes, sk.
The quality of a lossy coder is measured by the tradeoff
between the rate (or the total number of representation points)
and the distortion between source and the representation. A
lossy source code operating at a given fidelity is good if its
rate approaches the information-theoretic minimum, i.e. the
rate-distortion function. If the source blocks are distributed
according to PSk , and the lossy coder assigns source blocks to
their representations according to the conditional probability
distribution PZk|Sk , the joint distribution of the pairs of
input/output blocks induced by that coder is PSkPZk|Sk .
This paper studies the properties of PSkPZk|Sk . In particular,
we show that the distributions generated by all good codes
necessarily look alike and are close to the distribution that
achieves the rate-distortion function (see Fig. 1). We give a
precise characterization of that property, thereby providing a
necessary condition that any good code must satisfy. Such
a necessary condition aids in the search for practical codes,
as it helps to discard potential candidates for good codes.
Moreover, knowledge of distributional properties of good codes
facilitates design of systems that include a source coding block
as one of their components. For example, it was observed
in [1] that a dispersion-optimal joint source-channel scheme
can be implemented as a good lossy source code wrapped
around a good channel code, provided that the channel code
properly accounts for the statistics of the source encoder outputs.
Knowing the output statistics of any good source code allows
for universally almost-optimal designs of inner channel codes
regardless of a particular implementation of the outer source
code.

Distributions induced by good channel codes were studied
in [2], [3]. Shannon [4, Sec. 25] was the first to comment
on the fact that to maximize the transmission rate over an
AWGN channel, the codewords must resemble a white Gaussian
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Fig. 1. The joint source/reproduction distribution of a good code not only
satisfies the condition set out by the operational problem (in terms of distortion)
but it belongs to a neighborhood of the joint distribution achieving the rate-
distortion function.

noise. Shamai and Verdú [2] showed that the distribution
at the memoryless channel output induced by a capacity-
achieving sequence of codes with vanishing error probability
converges (in normalized relative entropy) to the capacity-
achieving output distribution, a result later generalized to a
non-vanishing maximal error probability by Polyanskiy and
Verdú [3].

Weissman and Ordentlich [5] studied the empirical marginal
(per-letter) distributions induced by good source codes, i.e. the
frequency of appearances of pairs of input/output letters (s, z)
observed at the input and output of the lossy coder. In particular,
they showed that for a stationary discrete memoryless source
with separable distortion measure, any sequence of good codes
operating at average distortion d has the following property:
the frequency of appearances of pairs of input/output letters
(s, z) converges almost surely to PSPZ?|S, where PZ?|S is the
probability kernel that attains the rate-distortion function R(d).
Kanlis et al. [6] showed that the type of most reproduction
points of a good source code approaches PZ? , the marginal of
PSPZ?|S. Schieler and Cuff [7] studied actual joint blockwise
(rather than empirical) distributions induced by good source
codes and showed, in particular, that for discrete memoryless
sources

lim
k→∞

1

k
D
(
PSk|Zk‖P k

S|Z? |PZk

)
= 0, (1)

where PSk|ZkPZk = PZk|SkPSk is the joint distribution
between the input and the output block induced by the code,
PS|Z? is the backward conditional distribution corresponding to
the joint distribution achieving the rate-distortion function,
and D(PSk|Zk‖P k

S|Z? |PZk) = D(PSk|ZkPZk‖P k
S|Z?PZk) is

the conditional relative entropy. Like [7], this paper focuses on
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the actual, not empirical, joint blockwise distributions of good
codes. As we will see (1) will follow as a simple corollary to
our main result.

In this paper, we consider a general stationary ergodic source
with subadditive distortion measure and we show that for any
sequence of codes operating at average distortion d,

D(PSk|Zk‖PSk|Zk? |PZk) ≤ kR− RSk(d) (2)

for arbitrary k, where R is the rate of the code, and RSk(d)
is the k-th order rate-distortion function:

RSk(d) , min
P

Zk|Sk :

E[dk(Sk,Zk)]≤d

I(Sk;Zk), (3)

where dk(Sk, Zk) is the distortion between Sk and Zk,
and PZk?|Sk is the conditional distribution that achieves
RSk(d). Of course, for good codes (2) implies convergence
of the normalized conditional relative entropy to 0, as in (1).
Furthermore, we generalize (2) to variable-length compression
and to joint source-channel coding.

II. SINGLE SHOT LOSSY COMPRESSION

The lossy source coding problem can be abstracted as
follows: the source S ∈M, whereM is an abstract alphabet, is
to be represented, under a rate constraint, by codewords living
in the reproduction alphabet M̂. The fidelity of reproduction
is quantified by the distortion measure d : M×M̂ 7→ [0,+∞].
A lossy code gives rise to a transition probability kernel
PZ|S : M 7→ M̂. We are interested in the properties PZ|S
must necessarily have, provided that optimal rate-distortion
tradeoffs are approached.

Throughout the paper, we assume that the target distortion
d ≥ dmin, where dmin is the infimum of values at which the
minimal mutual information quantity

RS(d) , min
PZ|S :

E[d(S,Z)]≤d

I(S;Z) (4)

is finite1. We also assume the mild condition that PZ?|S
achieves the minimum in the right side of (4) while satisfying
the constraint with equality.

The d-tilted information in s ∈M [8], [9] can be defined
as

S(s, d) , ıS;Z?(s; z) + λ?d(s, z)− λ?d, (5)

where the usual information density is the logarithm of the
Radon-Nikodym derivative of PSZ? = PSPZ?|S with respect
to PSPZ? :2

ıS;Z?(s; z) , log
dPZ?S

dPS × dPZ?

(s, z), (6)

z ∈ supp (PZ?), and

λ? , −R′S(d) (7)

1We assume that RS(d) is finite for some d.
2PZ? is the output distribution corresponding to the conditional probability

distribution PZ?|S that achieves the rate-distortion function.

is the negative of the slope of rate-distortion function. Note
that the value of the right side of (5) does not depend on the
choice of z ∈ supp (PZ?) [10], [11], i.e. it is a function of
s ∈M only. Throughout, to ensure that the notion of support
is well-defined we assume that M̂ is a topological space.

An important property of the d-tilted information is that

RS(d) = E [S(S, d)] . (8)

Our main tool is the following basic property of the
probability kernel that achieves the minimum in the right side
of (4).

Theorem 1. Any PZ|S such that 3

supp (PZ) ⊆ supp (PZ?) , (9)

where PZ is the output distribution induced by the code,
satisfies

D(PS|Z‖PS|Z? |PZ) = I(S;Z)− RS(d)

+ λ?E [d(S,Z)]− λ?d. (10)

In particular, if PZ|S is such that

E [d(S,Z)] ≤ d, (11)

we may weaken (10) to conclude

D(PS|Z‖PS|Z? |PZ) ≤ I(S;Z)− RS(d). (12)

Proof. Write

I(S;Z)−D(PS|Z‖PS|Z? |PZ) + λ?E [d(S,Z)]− λ?d
= E [ıS;Z?(S;Z)] + λ?E [d(S,Z)]− λ?d (13)
= E [S(S, d)] (14)
= RS(d), (15)

where to get (14) we used (5) and (9).

Notice that (12) implies in particular that
D(PS|Z‖PS|Z? |PZ) <∞ whenever I(S;Z) <∞.

III. BLOCK CODING

A. Formal problem setup

This section treats block coding of a stationary ergodic
source. The abstract single-shot setup in Section II specializes
toM = Ak, M̂ = Âk, dk : Ak×Âk 7→ [0,∞]. Going beyond
separable distortion measures, we assume that the distortion
measure is subadditive, i.e. that

dn+m ((sn1 , s
m
2 ), (zn1 , z

m
2 )) ≤ n

m+ n
dn(sn1 , z

n
1 )

+
m

m+ n
dm(sm1 , z

m
1 ). (16)

We are interested in the asymptotic properties of PZk|Sk

common to all codes that achieve the optimal rate-distortion

3This includes all codes PZ|S if supp (PZ? ) = M̂.



tradeoffs, in different senses we formalize next. We consider
codes operating at a given average distortion:

E
[
dk(Sk, Zk)

]
≤ d. (17)

We consider both fixed and average rate constraints:
(i) Fixed rate constraint: a fixed-length lossy code of rate

R is a pair of random mappings (PW |Sk , PZk|W ), where
W ∈ {1, . . . , exp(kR)}.

(ii) Average rate constraint: a variable-length lossy code
of average rate R is a pair of random map-
pings (PW |Sk , PZk|W ), where W ∈ {1, 2, . . .}, and
E [`(W )] = kR where `(w) is the length of the binary
representation of integer w.

For a stationary ergodic source with subadditive distortion
measure, the operational rate-distortion function, i.e. the
minimum asymptotically achievable rate, fixed or average,
compatible with average distortion d, satisfies [12, Lemma
10.6.2, Theorem 11.5.11]

R(d) = inf
k

1

k
RSk(d) = lim

k→∞
1

k
RSk(d), (18)

where
RSk(d) , inf

P
Zk|Sk :

E[dk(Sk,Zk)]≤d

I
(
Sk;Zk

)
. (19)

B. The main result

Our main result explores the restrictions imposed on
D(PSk|Zk‖PSk|Zk? |PZk) by the constraints on rate and distor-
tion.

Theorem 2. Let {Sk}∞k=1 be a stationary ergodic source
with subadditive distortion measure. Let PZk?|Sk achieve the
infimum in (19). Let {PZk|Sk}∞k=1 be generated by a sequence
of codes for average distortion d with rates Rk (fixed or
average) such that Rk → R(d) as k →∞. Assume that

supp (PZk) ⊆ supp (PZk?) . (20)

Then,
1

k
I(Sk;Zk)→ R(d), (21)

1

k
D(PSk|Zk‖PSk|Zk? |PZk)→ 0. (22)

Proof. An immediate consequence of (12) and (18) is

1

k
D(PSk|Zk‖PSk|Zk? |PZk) ≤ 1

k
I(Sk;Zk)−R(d). (23)

Note that (23) holds for all codes that meet the distortion
constraint in (17), regardless of their rates.

To further upper-bound (23) when a rate constraint is
imposed, we invoke the data processing inequality. For fixed-
rate codes, we apply

I(Sk;Zk) ≤ kRk (24)

to the right side of (23) and use Rk → R(d) to obtain (21)
and (22).

For variable-length codes, by data processing and [13,
Lemma 3], for any S −W − Z we have

I(S;Z) ≤ H(W ) (25)
≤ E [`(W )] + log2(E [`(W )] + 1) + log2 e, (26)

and therefore

I(Sk;Zk) ≤ kRk + log2(kRk + 1) + log2 e. (27)

Applying (27) to the right sides of (23) and using Rk → R(d)
leads to both (21) and (22).

For the special case of fixed-length lossy compression of
a finite alphabet i.i.d. source with separable distortion, an
alternative proof of (22) using the concept of coordination
codes (introduced in [14]) follows from [7, (37) and Theorem
3].

Note that for any good deterministic code sequence, the
entropy of the reproduction converges to the rate-distortion
function:

1

k
H(Zk)→ R(d). (28)

Indeed, 1
kH(Zk) ≤ Rk → R(d) holds by the asymptotic

optimality of the code, and 1
kH(Zk) = 1

k I(Sk;Zk) ≥ R(d)
holds because the code is deterministic. Letting UZk be the
equiprobable distribution over the codebook, note that (22) and
(28) imply that for any good deterministic code sequence,

D(PSkZk‖PSk|Zk?UZk) =
1

k
D(PSk|Zk‖PSk|Zk? |PZk)

+
1

k
D(PZk‖UZk) (29)

→ 0, (30)

an observation made by Schieler and Cuff [7] in the context
of finite alphabet coordination codes.

On the other hand, Kanlis et al. [6, Proposition 2] demon-
strated the existence of rate-distortion-achieving codes for the
finite-alphabet i.i.d. source such that

lim
k→∞

inf
1

k
D(PZk|Sk‖P k

Z?|S|PSk) ≥ H(Z?|S), (31)

thereby showing that, in contrast to (22),

1

k
D(PZk|Sk‖PZk?|Sk |PSk) 9 0. (32)

To shed some light onto why (31) holds, let us demonstrate
the existence of a code sequence such that

1

k
D(PZk‖P k

Z?)→ H(Z?|S). (33)

Then, (31) will follow by the data processing inequality.
Consider a deterministic constant composition code with all
codewords of type PZ? (if the point masses of PZ? are not
multiples of 1

k , consider instead the k-type closest to PZ? ,
in terms of Euclidean distance, viewing the probability mass
function on a finite alphabet as a vector of length |M|). It is
known that such codes can achieve the rate-distortion function,



see e.g. [8] for refined achievability results. Letting zk be any
output sequence of type PZ? , write

1

k
D(PZk‖P k

Z?) =
1

k
log

1

PZk?(zk)
− 1

k
H(Zk) (34)

→ H(Z?)− I(S;Z?) (35)
= H(Z?|S), (36)

where 1
k log 1

P
Zk? (zk)

→ H(Z?) in (35) is by type counting,
and 1

kH(Zk)→ I(S;Z?) is due to (28).

C. Redundancy-optimal codes

The difference between the rate of the code and the rate-
distortion function, ∆k(d) , Rk − RSk(d), is referred to
as the rate redundancy. Denote the minimum achievable rate
redundancy among all codes operating at average distortion
d and blocklength k by ∆?

k(d). A nonasymptotic refinement
of (22) is the following: any redundancy-optimal code for a
stationary ergodic source with subadditive distortion measure
must satisfy, via (23) and (24),

1

k
D(PSk|Zk‖PSk|Zk? |PZk) ≤ ∆?

k(d). (37)

In fixed-length coding of an i.i.d. discrete source with a
separable distortion measure, the work by Zhang et al. [15]
implies that the minimum achievable rate redundancy ∆?

k(d)
is equal to

∆?
k(d) =

1

2k
log k +O

(
1

k
log log k

)
. (38)

D. Codes operating under an excess distortion constraint

In lieu of the average distortion constraint (17), one might
be interested in reproducing the source within distortion d,
with high probability:

P
[
dk(Sk, Zk) > d

]
≤ εk. (39)

For bounded distortion measures (or more generally under a
uniform integrability condition, see [16]) , convergence of the
distortion in probability as k →∞ to d implies convergence
of the average distortion to d and vice versa:

d(Sk, Zk)
P→ d⇐⇒ E

[
d(Sk, Zk)

]
→ d. (40)

Therefore, for bounded distortion measures, Theorem 2
continues to hold for sequences of codes that satisfy
P
[
dk(Sk, Zk) > d

]
→ 0 instead of (17).

However, Theorem 2 need not hold if a small but nonvanish-
ing excess-distortion probability is tolerated even as k →∞, i.e.
if it is only asked that εk ≤ ε. This behavior is similar to that
of channel codes with nonvanishing average error probability
[3]. To construct a simple counterexample, let PZ̃k|Sk be a
good lossy coder for the binary memoryless source such that
the probability that the Hamming distance between the source
and its representation exceeds d < 1

2 is ε. Without loss of
generality, we may assume that the all-zero vector 0k and
the all-one vector 1k are not contained the codebook. Modify
this code in the following way: if d(Sk, Z̃k) ≤ d, output Z̃k.

If d(Sk, Z̃k) > d, output 0k if the Hamming weight of Sk

is exceeds 1
2k and output 1k if the Hamming weight of Sk

is less than or equal to 1
2k. Denote the resulting conditional

probability distribution by PZk|Sk . Clearly,

P
[
d(Sk, Zk) > d|Zk /∈ {0k, 1k}

]
= 0 (41)

P
[
d(Sk, Zk) ≥ 1

2 |Z
k ∈ {0k, 1k}

]
= 1 (42)

PZk({0k, 1k}) = ε (43)

Denote for brevity the set

E ,
{

(sk, zk) ∈ Ak × Âk : d(sk, zk) ≥ 1
2

}
. (44)

Write

D(PSk|Zk‖PSk|Zk? |PZk)

≥ d
(
PSkZk|Zk∈{0k,1k}(E)‖PSkZk?|Zk?∈{0k,1k}(E)

)
ε (45)

= ε log
1

PSkZk?|Zk?∈{0k,1k}(E)
(46)

= k d
(
1
2‖d
)
ε, (47)

where (45) with d(p‖q) , p log p
q + (1 − p) log 1−p

1−q is by
the data processing inequality and (43), (46) is due to (42)
which holds by construction. Finally, (47) is by Cramér’s large
deviations theorem: conditioned on Zk?,

kd(Sk, Zk?) =

k∑
i=1

1{Si 6= Z?
i } (48)

has Bernouilli distribution with success probability d (e.g. [17]).

E. Lossy joint source-channel coding

Theorem 2 generalizes to the joint source-channel coding
setup. In fixed-length JSCC, Sk−Xn−Y n−Zk, where PY n|Xn

is fixed. In variable-length JSCC with feedback and termination,
the encoder has access to Y n−1, and the transmission stops
when a special termination symbol is received, which is always
decoded error-free [18]. We restrict attention to the discrete
memoryless channel. The rates of ‘good’ JSCC for distortion
d approach the asymptotic fundamental limit: k

n →
C

R(d) as
k, n→∞, where C is the channel capacity, or, for the variable-
length setup, k

` →
C

R(d) where ` is the average transmission
time.

Theorem 3 (JSCC). Let {Sk}∞k=1 be stationary ergodic source
with subadditive distortion measure. Let {PZk|Sk}∞k=1 be
generated by a sequence of good JSCC codes for average
distortion d for the discrete memoryless channel (fixed length
or variable length with feedback). Assume that (20) is satisfied.
Then, both (21) and (22) must hold.

Proof. For the fixed-rate setup, applying the data processing
inequality

I(Sk;Zk) ≤ I(Xn;Y n) (49)
≤ nC (50)

to the right side of (23) and taking the limit as k, n → ∞
leads to both (21) and (22).



For variable-length coding over the DMC with feedback,
we conclude from the proof of [18, Theorem 4] (replacing the
right side of [18, (67)] by I(Sk;Zk)) that

I(Sk;Zk) ≤ C`+ log(`+ 1) + log e. (51)

Applying (27) to the right side of (23) and taking the limit as
k, `→∞ leads to both (21) and (22).
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