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Abstract—This paper shows the strong converse and the
dispersion of memoryless channels with cost constraints and
performs refined analysis of the third order term in the asymp-
totic expansion of the maximum achievable channel coding rate,
showing that it is equal to 1

2
logn
n

in most cases of interest. The
analysis is based on a non-asymptotic converse bound expressed
in terms of the distribution of a random variable termed the
b-tilted information density, which plays a role similar to that of
the d-tilted information in lossy source coding. We also analyze
the fundamental limits of lossy joint-source-channel coding over
channels with cost constraints.

Index Terms—Converse, finite blocklength regime, channels
with cost constraints, joint source-channel coding, strong con-
verse, dispersion, memoryless sources, memoryless channels,
Shannon theory.

I. INTRODUCTION

This paper is concerned with the maximum channel coding
rate achievable at average error probability ε > 0 where
the cost of each codeword is constrained. The capacity-cost
function C(β) of a channel specifies the maximum achievable
channel coding rate compatible with vanishing error probabil-
ity and with codeword cost not exceeding β in the limit of
large blocklengths.

A channel is said to satisfy the strong converse if ε→ 1 as
n → ∞ for any code operating at a rate above the capacity.
For memoryless channels without cost constraints, the strong
converse was first shown by Wolfowitz: [1] treats the discrete
memoryless channel (DMC), while [2] generalizes the result
to memoryless channels whose input alphabet is finite while
the output alphabet is the real line. Arimoto [3] showed a
new converse bound stated in terms of Gallager’s random
coding exponent, which also leads to the strong converse
for the DMC. Dueck and Körner [4] found the reliability
function of DMC for rates above capacity, a result which
implies a strong converse. Kemperman [5] showed that the
strong converse holds for a DMC with feedback. A simple
proof of strong converse for memoryless channels that does
not invoke measure concentration inequalities was recently
given in [6]. For a class of discrete channels with finite
memory, the strong converse was shown by Wolfowitz [7]
and independently by Feinstein [8], a result soon generalized
to a more general class of stationary discrete channels with
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finite memory [9]. In a more general setting not requiring
the assumption of stationarity or finite memory, Verdú and
Han [10] showed a necessary and sufficient condition for a
channel without cost constraints to satisfy the strong converse,
while Han [11, Theorem 3.7.1] generalized that condition to
the setting with cost constraints. In the special case of finite-
input channels, that necessary and sufficient condition boils
down to the capacity being equal to the limit of maximal
normalized mutual informations. In turn, that condition is
implied by the information stability of the channel [12], a
condition which in general is not easy to verify. Using a
novel notion of strong information stability, a general strong
converse result was recently shown in [13, Theorem 3]. The
strong converse for DMC with separable cost was shown by
Csiszár and Körner [14, Theorem 6.11] and by Han [11,
Theorem 3.7.2]. Regarding continuous channels, in the most
basic case of the memoryless additive white Gaussian noise
(AWGN) channel with the cost function being the power of
the channel input block, bn(xn) = 1

n |x
n|2, the strong con-

verse was shown by Shannon [15] (contemporaneously with
Wolfowitz’s finite-alphabet strong converse). Yoshihara [16]
proved the strong converse for the time-continuous channel
with additive Gaussian noise having an arbitrary spectrum
and also gave a simple proof of Shannon’s strong converse
result. Under the requirement that the power of each message
converges stochastically to a given constant β, the strong
converse for the AWGN channel with feedback was shown by
Wolfowitz [17]. Note that in all those analyses of the power-
constrained AWGN channel the cost constraint is meant on
a per-codeword basis. In fact, the strong converse ceases to
hold if the cost constraint is averaged over the codebook [18,
Section 4.3.3].

Channel dispersion quantifies the backoff from capacity,
unescapable at finite blocklengths due to the random nature
of the channel coming into play, as opposed to the asymptotic
representation of the channel as a deterministic bit pipe
of a given capacity. More specifically, for coding over the
DMC, the maximum achievable code rate at blocklength
n compatible with error probability ε is approximated by
C −

√
V
nQ
−1 (ε) [19], [20] where C is the channel capacity,

V is the channel dispersion, and Q−1 (·) is the inverse of
the Gaussian complementary cdf. Polyanskiy et al. [20] found
the dispersion of the DMC without cost constraints as well as
that of the AWGN channel with a power constraint. In parallel,
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Hayashi [21, Theorem 3] gave the dispersion of the DMC with
and without cost constraints (with the loose estimate of o (

√
n)

for the third order term). For constant composition codes over
the DMC, Polyanskiy [18, Sec. 3.4.6] showed the dispersion of
constant composition codes over the DMC, while Moulin [22]
refined the third-order term in the expansion of the maximum
achievable code rate, under regularity conditions. Wang et
al. [23] gave a second-order analysis of joint source-channel
coding over finite alphabets based on constant composition
codebooks.

In this paper, we demonstrate that the nonasymptotic funda-
mental limit for coding over channels with cost constraints is
closely approximated in terms of the cdf of a random variable
we refer to as the b-tilted information density, which paral-
lels the notion of d-tilted information for lossy compression
[24]. We show a simple non-asymptotic converse bound for
general channels with input cost constraints in terms of b-
tilted information density. Not only does this bound lead to a
general strong converse result, but it is also tight enough to
find the channel dispersion-cost function and the third order
term equal to 1

2 log n when coupled with the corresponding
achievability bound. More specifically, we show that for the
DMC, logM?(n, ε, β), the logarithm of the maximum achiev-
able code size at blocklength n, error probability ε and cost
β, is given by, under mild regularity assumptions

logM?(n, ε, β) = nC(β)−
√
nV (β)Q−1 (ε)+

1

2
log n+O (1)

(1)
where V (β) is the dispersion-cost function, thereby refining
Hayashi’s result [21] and providing a matching converse to
the result of Moulin [22]. We observe that the capacity-
cost and the dispersion-cost functions are given by the mean
and the variance of the b-tilted information density. This
novel interpretation juxtaposes nicely with the corresponding
results in [24] (d-tilted information in rate-distortion theory).
Furthermore, we generalize (1) to lossy joint source-channel
coding of general memoryless sources over channels with cost.

Section II introduces the b-tilted information density. Sec-
tion III states the new non-asymptotic converse bound which
holds for a general channel with cost constraints, without
making any assumptions on the channel (e.g. alphabets, sta-
tionarity, memorylessness). An asymptotic analysis of the
converse and achievability bounds, including the proof of the
strong converse and the expression for the channel dispersion-
cost function, is presented in Section IV in the context of
memoryless channels. Section V generalizes the results in
Sections III and IV to the lossy joint source-channel coding
setup.

II. b-TILTED INFORMATION DENSITY

In this section, we introduce the concept of b-tilted infor-
mation density and several relevant properties in a general
single-shot approach.

Fix the transition probability kernel PY |X : X → Y and the
cost function b : X 7→ [0,∞]. In the application of this single-
shot approach in Section IV, X , Y , PY |X and b will become

An, Bn, PY n|Xn and bn, respectively. Denote

C(β) = sup
PX :

E[b(X)]≤β

I(X;Y ), (2)

λ? = C′(β). (3)

Since C(β) is non-decreasing concave function of β [14,
Theorem 6.11], λ? ≥ 0. For random variables Y and Ȳ defined
on the same space, denote

ıY ‖Ȳ (y) = log
dPY
dPȲ

(y). (4)

If Y is distributed according to PY |X=x, we abbreviate the
notation as

ıX;Ȳ (x; y) = log
dPY |X=x

dPȲ
(y). (5)

in lieu of ıY |X=x‖Ȳ (y). The information density ıX;Y (x; y)
between realizations of two random variables with joint distri-
bution PXPY |X follows by particularizing (5) to {PY |X , PY },
where PX → PY |X → PY

1. In general, however, the function
in (5) does not require PȲ to be induced by any input
distribution.

Further, define the function

X;Ȳ (x; y, β) = ıX;Ȳ (x; y)− λ? (b(x)− β) . (6)

The special case of (6) with PȲ = PY ? , where PY ? is the
unique output distribution that achieves the supremum in (2)
[25], defines b-tilted information density:

Definition 1 (b-tilted information density). The b-tilted infor-
mation density between x ∈ X and y ∈ Y is X;Y ?(x; y, β).

Since PY ? is unique even if there are several (or none) input
distributions PX? that achieve the supremum in (2), there is
no ambiguity in Definition 1. If there are no cost constraints
(i.e. b(x) = 0 ∀x ∈ X ), then C′(β) = 0 regardless of β, and

X;Ȳ (x; y, β) = ıX;Ȳ (x; y). (7)

The counterpart of the b-tilted information density in rate-
distortion theory is the d-tilted information [24].

Example 1. For n uses of a memoryless AWGN channel
with unit noise power and maximal power not exceeding nP ,
C(P ) = n

2 log(1+P ), and the output distribution that achieves
(2) is Y n? ∼ N (0, (1 + P ) I). Therefore

Xn;Y n?(xn; yn, P ) =
n

2
log (1 + P )− log e

2
|yn − xn|2

+
log e

2(1 + P )

(
|yn|2 − |xn|2 + nP

)
,

(8)

where the Euclidean norm is denoted by |xn|2 =
∑n
i=1 x

2
i .

It is easy to check that under PY n|Xn=xn , the distribution of

1We write PX → PY |X → PY to indicate that PY is the marginal of
PXPY |X , i.e. PY (y) =

∫
X dPY |X(y|x)dPX(x).
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Xn;Y n?(xn;Y n, P ) is the same as that of (by ‘∼’ we mean
equality in distribution)

Xn;Y n?(xn;Y n, P )

∼ n

2
log (1 + P )− P log e

2(1 + P )

[
Wn
|xn|2
P2

− n− |x
n|2

P 2

]
, (9)

where W `
λ denotes a non central chi-square distributed ran-

dom variable with ` degrees of freedom and non-centrality
parameter λ. The mean of (9) is n

2 log (1 + P ), in accordance

with (16), while its variance is 1
2

(nP 2+2|xn|2)
(1+P )2 log2 e which

becomes nV (P ) (found in [20] and displayed in (46)) af-
ter averaging with respect to Xn? distributed according to
PXn? ∼ N (0, P I).

Denote 2

βmin = inf
x∈X

b(x), (10)

βmax = sup {β ≥ 0: C(β) < C(∞)} . (11)

Theorem 1 below highlights the importance of b-tilted
information density in the optimization problem (2). Of key
significance in the asymptotic analysis in Section IV, Theorem
1 gives a nontrivial generalization of the well-known properties
of information density to the setting with cost constraints.

Theorem 1. Fix βmin < β < βmax. Assume that PX?
achieving (2) is such that the constraint is achieved with
equality:

E [b(X?)] = β. (12)

Then, the following equalities hold.

C(β) = sup
PX

E [X;Y (X;Y, β)] (13)

= sup
PX

E [X;Y ?(X;Y, β)] (14)

= E [X;Y ?(X?;Y ?, β)] (15)
= E [X;Y ?(X?;Y ?, β)|X?] , (16)

where (16) holds PX? -a.s., and PX → PY |X → PY , PX? →
PY |X → PY ? .

Proof. Appendix A.

Throughout the paper, we assume that the assumptions of
Theorem 1 hold.

For channels without cost, the inequality

D(PY |X=x‖PY ?) ≤ C ∀x ∈ X (17)

is key to proving strong converses. Theorem 1 generalizes this
result to channels with cost, showing that

E [X;Y ?(x;Y, β)|X = x] ≤ C(β) ∀x ∈ X . (18)

Note that (18) is crucial for showing both the strong converse
and the refined asymptotic analysis.

2We allow βmax = +∞.

Remark 1. The general strong converse result in [13, Theorem
3] includes channels with cost using the concept of ‘quasi-
caod’, which is defined as any output distribution PY n such
that

D(PY n|Xn=xn‖PY n) ≤ I?n+ o (I?n) ∀xn ∈ An : bn(xn) ≤ β,
(19)

where A is the single-letter channel input alphabet, and
I?n = maxPXn : b(Xn)≤b a.s. I(Xn;Y n). Since C(β) =
limn→∞

1
nI

?
n, (18) implies that PY? × . . . × PY? is always

a quasi-caod.

Corollary 2. For all PX � PX?

Var [X;Y ?(X;Y, β)] = E [Var [X;Y ?(X;Y, β)|X]] (20)
= E [Var [ıX;Y ?(X;Y )|X]] . (21)

Proof. Appendix B.

III. NONASYMPTOTIC BOUNDS

Converse and achievability bounds give necessary and suffi-
cient conditions, respectively, on (M, ε, β) in order for a code
to exist with M codewords and average error probability not
exceeding ε and cost not exceeding β. Such codes (allowing
stochastic encoders and decoders) are rigorously defined next.

Definition 2 ((M, ε, β) code). An (M, ε, β) code for
{PY |X , b} is a pair of random transformations PX|S (en-
coder) and PZ|Y (decoder) such that P [S 6= Z] ≤ ε, where
S−X−Y−Z, the probability is evaluated with S equiprobable
on an alphabet of cardinality M , and the codewords satisfy
the maximal cost constraint (a.s.)

b(X) ≤ β. (22)

The non-asymptotic quantity of principal interest is
M?(ε, β), the maximum code size achievable at error proba-
bility ε and cost β.

Theorem 3 (Converse). The existence of an (M, ε, β) code
for {PY |X , b} requires that

ε ≥ max
γ>0

{
sup
Ȳ

inf
x : b(x)≤β

P
[
ıX;Ȳ (x;Y ) ≤ logM − γ|X = x

]
− exp(−γ)

}
(23)

≥ max
γ>0

{
sup
Ȳ

inf
x∈X

P
[
X;Ȳ (x;Y, β) ≤ logM − γ|X = x

]
− exp(−γ)

}
. (24)

Proof. The bound in (23) is due to Wolfowitz [26]. The bound
in (24) simply weakens (23) using b(x) ≤ β.

By restricting the channel input space appropriately, con-
verse bounds for channels with cost constraints can be ob-
tained from the converse bounds in [20], [27]. Their analysis
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becomes tractable by the introduction of b-tilted information
density in (24) and an application of (18).

Achievability bounds for channels with cost constraints can
be obtained from the random coding bounds in [20], [27]
by restricting the distribution from which the codewords are
drawn to satisfy b(X) ≤ β a.s. In particular, for the DMC, we
may choose PXn to be equiprobable on the set of codewords of
the type closest (among types satisfying the cost constraint)
to the input distribution PX? that achieves the capacity-cost
function. As shown in [21], such constant composition codes
achieve the dispersion of channel coding under input cost
constraints. Unfortunately, the computation of such bounds
may become challenging in high dimension, particularly with
continuous alphabets.

IV. ASYMPTOTIC ANALYSIS

To introduce the blocklength into the non-asymptotic
converse of Section III, we consider (M, ε, β) codes for
{PY n|Xn , bn}, where PY n|Xn : An 7→ Bn and bn : An 7→
[0,∞]. We call such codes (n,M, ε, β) codes, and denote the
corresponding non-asymptotically achievable maximum code
size by M?(n, ε, β).

A. Assumptions

The following basic assumptions hold throughout Section
IV.

(i) The channel is stationary and memoryless, PY n|Xn =
PY|X × . . .× PY|X.

(ii) The cost function is separable, bn(xn) = 1
n

∑n
i=1 b(xi),

where b : A 7→ [0,∞].
(iii) Each codeword is constrained to satisfy the maximal cost

constraint, bn(xn) ≤ β.
(iv) supx∈AVar [X;Y?(x;Y, β)|X = x] = Vmax <∞.

Under these assumptions, the capacity-cost function is given
by

C(β) = sup
PX : E[b(X)]≤β

I(X;Y). (25)

Observe that in view of assumptions (i) and (ii), as long as
PȲ n is a product distribution, PȲ n = PȲ × . . .× PȲ,

Xn;Ȳ n(xn; yn, β) =

n∑
i=1

X;Ȳ(xi; yi, β). (26)

B. Strong converse

Although the tools developed in Sections II and III are able
to result in a strong converse for channels that exhibit ergodic
behavior (see also Remark 1), for the sake of concreteness and
length, we only deal here with the memoryless setup described
in Section IV-A.

We show that if transmission occurs at a rate greater than
the capacity-cost function, the error probability must converge
to 1, regardless of the specifics of the code. Towards this end,
we fix some α > 0, we choose logM ≥ nC(β)+2nα, and we
weaken the bound (24) in Theorem 3 by fixing γ = nα and

PȲ n = PY? × . . . × PY? , where Y? is the output distribution
that achieves C(β), to obtain

ε ≥ inf
xn∈An

P

[
n∑
i=1

X;Y?(xi;Yi, β) ≤ nC(β) + nα

]
− exp(−nα) (27)

≥ inf
xn∈An

P

[
n∑
i=1

X;Y?(xi;Yi, β) ≤
n∑
i=1

c(xi) + nα

]
− exp(−nα), (28)

where for notational convenience we have abbreviated

c(x) = E [X;Y?(x;Y, β)|X = x] , (29)

and (28) employs (14).
To show that the right side of (28) converges to 1, we

invoke the following law of large numbers for non-identically
distributed random variables.

Lemma 1 (e.g. [28]). Suppose that Wi are uncorrelated and∑∞
i=1 Var

[
Wi

ci

]
<∞ for some strictly positive sequence (cn)

increasing to +∞. Then,

1

cn

(
n∑
i=1

Wi − E

[
n∑
i=1

Wi

])
→ 0 in L2. (30)

Let Wi = X;Y?(xi;Yi, β) and ci = i. Since (recall (iv))
∞∑
i=1

Var

[
1

i
X;Y?(xi;Yi, β)|Xi = xi

]
≤ Vmax

∞∑
i=1

1

i2
(31)

<∞, (32)

by virtue of Lemma 1, the right side of (28) converges to
1, so any channel satisfying (i)–(iv) also satisfies the strong
converse.

As noted in [18, Theorem 77] in the context of the AWGN
channel, the strong converse does not hold if the cost constraint
is averaged over the codebook, i.e. if, in lieu of (22), the cost
requirement is

1

M

M∑
m=1

E [b(X)|S = m] ≤ β. (33)

To see why the strong converse does not hold in general,
fix a code of rate C(β) < R < C(2β) none of whose
codewords cost more than 2β and whose error probability
satisfies εn → 0. Since R < C(2β), such a code exists.
Now, replace half of the codewords with the all-zero codeword
(assuming b(0) = 0) while leaving the decision regions of the
remaining codewords untouched. The average cost of the new
code satisfies (33), its rate is greater than the capacity-cost
function, R > C(β), yet its average error probability does not
exceed εn + 1

2 →
1
2 .

C. Dispersion

First, we give the operational definition of the dispersion-
cost function of any channel.
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Definition 3 (Dispersion-cost function). The channel
dispersion-cost function, measured in squared information
units per channel use, is defined by

V (β) = lim
ε→0

lim sup
n→∞

1

n

(nC(β)− logM?(n, ε, β))
2

2 loge
1
ε

. (34)

An explicit expression for the dispersion-cost function of a
discrete memoryless channel is given in the next result.

Theorem 4. In addition to assumptions (i)–(iv), assume that
the capacity-achieving input distribution PX? is unique and
that the channel has finite input and output alphabets.

logM?(n, ε, β) = nC(β)−
√
nV (β)Q−1 (ε) + θ(n), (35)

C(β) = E [X;Y?(X?;Y?, β)] , (36)
V (β) = Var [X;Y?(X?;Y?, β)] , (37)

where the remainder term θ(n) satisfies:
a) If V (β) > 0,

−1

2
(|supp (PX?)| − 1) log n+O (1) ≤ θ(n) (38)

≤ 1

2
log n+O (1) .

(39)

b) If V (β) = 0, (38) holds, and (39) is replaced by

θ(n) ≤ O
(
n

1
3

)
. (40)

Proof. Converse. Full details are given in Appendix D. The
main steps of the refined asymptotic analysis of the bound
in Theorem 3 are as follows. First, building on the ideas of
[29], [30], we weaken the bound in (24) by a careful choice
of a non-product auxiliary distribution PȲ n . Second, using
Theorem 1 and the technical tools developed in Appendix C,
we show that the infimum in the right side of (24) is lower
bounded by ε for the choice of M in (35).

Achievability. Full details are given in Appendix E, which
provides an asymptotic analysis of the Dependence Testing
bound of [20] in which the random codewords are of type
closest to PX? , rather than drawn from the product distribution
PX × . . . × PX, as in achievability proofs for channel coding
without cost constraints. We use Corollary 2 to establish that
such constant composition codes achieve the dispersion-cost
function.

Remark 2. According to a recent result of Moulin [22],
the achievability bound on the remainder term in (38) can
be tightened to match the converse bound in (39), thereby
establishing that

θ(n) =
1

2
log n+O (1) , (41)

provided that the following regularity assumptions hold:
• The random variable ıX;Y?(X?;Y?) is of nonlattice type;
• supp(PX?) = A;
• Cov

[
ıX;Y?(X?;Y?), ıX;Y?(X̄?;Y?)

]
<

Var [ıX;Y?(X?;Y?)] where
PX̄?X?Y?(x̄, x, y) = 1

PY? (y)PX?(x̄)PY|X(y|x̄)PY|X(y|x)PX?(x).

Remark 3. As we show in Appendix F, Theorem 4 applies to
channels with abstract alphabets provided that in addition to
(i)–(ii), they meet the following criteria:
(a) The cost function b : A → [0,∞] is such that for all γ ∈

[β,∞), b−1(γ) is nonempty. In particular, this condition
is satisfied if the channel input alphabet A is a metric
space, and b is continuous and unbounded with b(0) = 0.

(b) The distribution of ıXn;Y n?(xn;Y n), where PY n? =
PY?×. . .×PY? does not depend on the choice of xn ∈ Fn,
where Fn = {xn ∈ An : bn(xn) = β}.

(c) For all x in the projection of Fn onto A, i.e. for all x such
that (x, x2, . . . , xn) ∈ Fn for some x2, . . . , xn,

E
[
|X;Y?(X;Y, β)− C(β)|3 |X = x

]
<∞. (42)

(d)3 There exists a distribution PXn supported on Fn such that
ıY n‖Y n?(Y n), where PXn → PY n|Xn → PY n , is almost
surely bounded by fn = o (

√
n) from above.

Then, (35) holds identifying (43)–(45) or all x ∈ A s.t.
b(x) = β:

C(β) = D(PY|X=x‖PY?), (43)
V (β) = Var [ıX;Y?(x;Y)|X = x] , (44)

−fn +O (1) ≤ θ(n) ≤ 1

2
log n+O (1) , (45)

where fn = o (
√
n) is specified in (d).

Remark 4. Theorem 4 with the remainder in (41) [31] also
holds for the AWGN channel with maximal signal-to-noise
ratio P , offering a novel interpretation of the dispersion of
the Gaussian channel [20]

V (P ) =
1

2

(
1− 1

(1 + P )
2

)
log2 e (46)

as the variance of the b-tilted information density. We note
that the AWGN channel satisfies the conditions of Remark 3
with PXn uniform on the power sphere and fn = O (1) [20].
Remark 5. As we show in Appendix G, a stationary memo-
ryless channel with b(x) = x which takes a nonnegative input
and adds an exponential noise of unit mean to it [32], satisfies
the conditions of Remark 3 with fn = O (1), and

X;Y?(x; y, β) = log(1 + β) +
β

1 + β
(x− y + 1) log e, (47)

C(β) = log(1 + β), (48)

V (β) =
β2

(1 + β)2
log2 e. (49)

Remark 6. As should be clear from the proof of Theorem 4,
if the capacity-achieving distribution is not unique, then

V (β) =

{
min Var [X;Y?(X?;Y?, β)] 0 < ε ≤ 1

2

max Var [X;Y?(X?;Y?, β)] 1
2 < ε < 1

(50)

where the optimization is performed over all PX? that achieve
C(β). This parallels the dispersion result for channels without
cost [20].

3For the converse result, assumptions (a)–(c) suffice.
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V. JOINT SOURCE-CHANNEL CODING

In this section we state the counterparts of Theorems 3 and
4 in the lossy joint source-channel coding setting. Proofs of
the results in this section are obtained by fusing the proofs in
Sections III and IV and those in [27].

In the joint source-channel coding setup the source is no
longer equiprobable on an alphabet of cardinality M , as in
Definition 2, rather it is arbitrarily distributed on an abstract
alphabetM. Further, instead of reproducing the transmitted S
under a probability of error criterion, we might be interested
in approximating S within a certain distortion, so that a
decoding failure occurs if the distortion between the source
and its reproduction exceeds a given distortion level d, i.e.
if d(S,Z) > d, where Z ∈ M̂ is the representation of S,
M̂ is a reproduction alphabet, and d : M × M̂ 7→ R+ is
the distortion measure. A (d, ε, β) code is a code for a fixed
source-channel pair such that the probability of exceeding
distortion d is no larger than ε and no channel codeword costs
more than β. A (d, ε, β) code in a block coding setting, when
a source block of length k is mapped to a channel block of
length n, is called a (k, n, d, ε, β) code. The counterpart of
the b-tilted information density in lossy compression is the d-
tilted information, S(s, d), which can be computed using the
equality

S(s, d) = ıZ?;S(z; s) + λSd(s, z)− λSd, (51)

where Z? is the random variable that achieves the infimum on
the right side of

RS(d) , min
PZ|S :

E[d(S,Z)]≤d

I(S;Z), (52)

λS = −R′S(d) > 0, and equality in (51) holds for PZ? -a.e.
z [24]. In a certain sense, the d-tilted information quantifies
the number of bits required to reproduce the source outcome
s ∈M within distortion d. For rigorous definitions and further
details we refer the reader to [27].

Theorem 5 (Converse). The existence of a (d, ε, β) code for
S and PY |X requires that

ε ≥ inf
PX|S

max
γ>0

{
sup
Ȳ

P
[
S(S, d)− X;Ȳ (X;Y, β) ≥ γ

]
− exp (−γ)

}
(53)

≥ max
γ>0

{
sup
Ȳ

E
[

inf
x∈X

P
[
S(S, d)− X;Ȳ (x;Y, β) ≥ γ | S

]]
− exp (−γ)

}
, (54)

where the probabilities in (53) and (54) are with respect to
PSPX|SPY |X and PY |X=x, respectively.

Proof. The bound is obtained by weakening [27, Theorem 1]
(23) using b(x) ≤ β.

Under the usual memorylessness assumptions, applying
Theorem 1 to the bound in (54), it is easy to show that the
strong converse holds for lossy joint source-channel coding

over channels with input cost constraints. A more refined
analysis leads to the following result.

Theorem 6 (Gaussian approximation). Assume the channel
has finite input and output alphabets. For stationary memo-
ryless sources satisfying the regularity assumptions (i)–(iv) of
[27] and channels satisfying assumptions (ii)–(iv) of Section
IV-A, the parameters of the optimal (k, n, d, ε) code satisfy

nC(β)− kR(d) =
√
nV (β) + kV(d)Q−1 (ε) + θ (n) , (55)

where V(d) = Var [S(S, d)], V (β) is given in (37), and the
remainder θ (n) satisfies, if V (β) > 0,

− 1

2
log n+O

(√
log n

)
≤ θ(n) (56)

≤ θ̄(n) +

(
1

2
|supp(PX?)| − 1

)
log n, (57)

where θ̄(n) = O (log n) denotes the upper bound on the re-
mainder term given in [27, Theorem 10]. If V (β) = V(d) = 0,
the upper bound on θ(n) stays the same, and the lower one
becomes O

(
n

1
3

)
.

Proof outline. The achievability part is proven joining the
asymptotic analyses of [27, Theorem 8] and of Theorem 9,
shown in Appendix E. For the converse part, PȲ is chosen as
in (146), and similar to the proof of the converse part of [27,
Theorem 10], a typical set of source outcomes is identified, and
it is shown using Theorem 7.2 that for every source outcome
in that set, the inner infimum in (54) is approximately achieved
by the capacity-achieving channel input type.

VI. CONCLUSION

We introduced the concept of b-tilted information density
(Definition 1), a random variable whose distribution governs
the analysis of optimal channel coding under input cost con-
straints. The properties of b-tilted information density listed
in Theorem 1 play a key role in the asymptotic analysis of
the converse bound in Theorem 3 in Section IV, which does
not only lead to the strong converse and the dispersion-cost
function when coupled with the corresponding achievability
bound, but it also proves that the third order term in the
asymptotic expansion (1) is upper bounded (in the most
common case of V (β) > 0) by 1

2 log n + O (1). In addition,
we showed in Section V that the results of [27] generalize to
coding over channels with cost constraints and also tightened
the estimate of the third order term in [27]. As propounded
in [29], [30], the gateway to the refined analysis of the third
order term is an apt choice of a non-product distribution PȲ n
in the bounds in Theorems 3 and 5.
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APPENDIX A
PROOF OF THEOREM 1

We note first two auxiliary results.

Lemma 2 ( [33]). Let 0 ≤ α ≤ 1, and let P � Q be
distributions on the same probability space. Then,

lim
α→0

1

α
D(αP + (1− α)Q‖Q) = 0. (58)

Lemma 3 (Donsker-Varadhan [34]). Let g : X 7→ [−∞,+∞]
and let X̄ be a random variable on X such that
E
[
exp

(
g(X̄)

)]
<∞. Then,

E [g(X)]−D(X‖X̄) ≤ logE
[
exp

(
g(X̄)

)]
(59)

with equality if and only if X has distribution PX? such that

ıX?‖X̄(x) = g(x)− logE
[
exp

(
g(X̄)

)]
. (60)

Proof. If the left side of (59) is not −∞, we can write

E [g(X)]−D(X‖X̄) = E
[
g(X)− ıX‖X?(X)− ıX?‖X̄(X)

]
(61)

= logE
[
exp

(
g(X̄)

)]
−D(X‖X?),

(62)

which is maximized by letting PX = PX? .

We proceed to prove Theorem 1 by generalizing [35,
Theorem 6.1]. Equality (13) is a standard result in convex
optimization. By the assumption, the supremum in the right
side of (13) is attained by PX? , therefore C(α) is equal to the
right side of (15).

To show (14), fix 0 ≤ α ≤ 1. Denote

PX̄ → PY |X → PȲ , (63)
PX̂ = αPX̄ + (1− α)PX? , (64)
PX̂ → PY |X → PŶ = αPȲ + (1− α)PY ? , (65)

and write

α
(
E [X;Y ?(X?;Y ?, β)]− E

[
X;Y ?(X̄; Ȳ , β)

])
+D(Ŷ ‖Y ?)

= αD(PY |X‖PY ? |PX?)− αD(PY |X‖PY ? |PX̄) +D(Ŷ ‖Y ?)
+ λ?αE

[
b(X̄)

]
− λ?αE [b(X?)] (66)

= D(PY |X‖PY ? |PX?)−D(PY |X‖PY ? |PX̂) +D(Ŷ ‖Y ?)

− λ?E [b(X?)] + λ?E
[
b(X̂)

]
(67)

= D(PY |X‖PY ? |PX?)−D(PY |X‖PŶ |PX̂)− λ?E [b(X?)]

+ λ?E
[
b(X̂)

]
(68)

= E [X;Y ?(X?;Y ?, β)]− E
[
X;Ŷ (X̂; Ŷ , β)

]
(69)

≥ 0, (70)

where (70) holds because X? achieves the supremum in the
right side of (13). Assume for the moment that PȲ � PY ? .
Lemma 2 implies that D(Ŷ ‖Y ?) = o (α). Thus, supposing
that E

[
X;Y ?(X̄; Ȳ , β)

]
> E [X;Y ?(X?;Y ?, β)] would lead

to a contradiction, since then the left side of (66) would be
negative for a sufficiently small α.

To complete the proof of (14), it remains to show PY ?

dominates all PȲ such that PX̄ → PY |X → PȲ . By
contradiction, assume that PX̄ and F ⊆ Y are such that
PȲ (F) > PY ?(F) = 0, and define the mixture PX̂ as in
(64). Note that

D(PY |X‖PŶ |PX̄) ≥ D(Ȳ ‖Ŷ ) (71)

≥ D(1{Ȳ ∈ F}‖1{Ŷ ∈ F}) (72)

≥ PȲ (F) log
PȲ (F)

PŶ (F)
(73)

= PȲ (F) log
1

α
. (74)

Furthermore, we have

E
[
X;Ŷ (X̂; Ŷ , β)

]
− E [X;Y ?(X?;Y ?, β)]

= αE
[
X;Ŷ (X̄; Ȳ , β)

]
+ (1− α)E

[
X;Ŷ (X?;Y ?, β)

]
− E [X;Y ?(X?;Y ?, β)] (75)

≥ αE
[
X;Ŷ (X̄; Ȳ , β)

]
− αE [X;Y ?(X?;Y ?, β)] (76)

≥ α
(
PȲ (F) log

1

α
− λ?E

[
b(X̄)

]
+ λ?β

− E [X;Y ?(X?;Y ?, β)]
)

(77)

> 0, (78)

where (76) is due to D(Y ?‖Ŷ ) ≥ 0, (77) invokes (74), and
(78) holds for sufficiently small α, thereby contradicting (13).
We conclude that indeed PȲ � PY ? .

To show (16), define the following function of a pair of
probability distributions on X :

F (PX , PX̄) = E
[
X;Ȳ (X;Y, β)

]
−D(X‖X̄) (79)

= E [X;Y (X;Y, β)]−D(X‖X̄) +D(Y ‖Ȳ )
(80)

≤ E [X;Y (X;Y, β)] , (81)

where (81) holds by the data processing inequality for relative
entropy. Since equality in (81) is achieved by PX = PX̄ , C(β)
can be expressed as the double maximization

C(β) = max
PX̄

max
PX

F (PX , PX̄). (82)

To solve the inner maximization in (82), we invoke Lemma
3 with

g(x) = E
[
X;Ȳ (x;Y, β)|X = x

]
(83)

to conclude that

max
PX

F (PX , PX̄) = logE
[
exp

(
E
[
X;Ȳ (X̄; Ȳ , β)|X̄

])]
,

(84)
which in the special case PX̄ = PX? yields, using represen-
tation (82),

C(β) ≥ logE [exp (E [X;Y ?(X?;Y, β)|X?])] (85)
≥ E [X;Y ?(X?;Y ?, β)] (86)
= C(β) (87)
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where (86) applies Jensen’s inequality to the strictly convex
function exp(·), and (87) holds by the assumption. We con-
clude that, in fact, (86) holds with equality, which implies
that E [X;Y ?(X?;Y, β)|X?] is almost surely constant, thereby
showing (16).

APPENDIX B
PROOF OF COROLLARY 2

To show (21), we invoke (6) to write, for any x ∈ X ,

Var [X;Y ?(X;Y, β)|X = x]

= Var [ıX;Y ?(X;Y )− λ? (b(X)− β) |X = x] (88)
= Var [ıX;Y ?(X;Y )|X = x] . (89)

To show (20), we invoke (16) to write

E [Var [X;Y ?(X;Y, β)|X]]

= E
[
(X;Y ?(X;Y, β))

2
]

− E
[
(E [X;Y ?(X;Y, β)|X])

2
]

(90)

= E
[
(X;Y ?(X;Y, β))

2
]
− C2(β) (91)

= Var [X;Y ?(X;Y, β)] . (92)

APPENDIX C
AUXILIARY RESULT ON THE MINIMIZATION OF THE CDF OF

A SUM OF INDEPENDENT RANDOM VARIABLES

Let D is a metric space with metric d : D2 7→ R+.
Let Wi(z), i = 1, . . . , n be independent random variables
parameterized by z ∈ D. Denote

Dn(z) =
1

n

n∑
i=1

E [Wi(z)] , (93)

Vn(z) =
1

n

n∑
i=1

Var [Wi(z)] , (94)

Tn(z) =
1

n

n∑
i=1

E
[
|Wi(z)− E [Wi(z)] |3

]
. (95)

Let `1, `2, `3, L1, L2, F1, F2, Vmin and Tmax be positive
constants. We assume that there exist z? ∈ D and sequences
D?
n, V ?n such that for all z ∈ D,

D?
n −Dn(z) ≥ `1d2 (z, z?)− `2√

n
d (z, z?)− `3

n
, (96)

D?
n −Dn(z?) ≤ L1

n
, (97)

|Vn(z)− V ?n | ≤ F1d (z, z?) +
F2√
n
, (98)

Vmin ≤ Vn(z), (99)
Tn(z) ≤ Tmax. (100)

Theorem 7. In the setup described above, under assumptions
(96)–(100), for any A > 0, there exists a K ≥ 0 such that, for
all |∆| ≤ δn (where δn is specified below) and all sufficiently
large n:

1. If δn = A√
n

,

min
z∈D

P

[
n∑
i=1

Wi(z) ≤ n (D?
n −∆)

]
≥ Q

(
∆

√
n

V ?n

)
− K√

n
.

(101)

2. For δn = A
√

logn
n ,

min
z∈D

P

[
n∑
i=1

Wi(z) ≤ n (D?
n −∆)

]
≥ Q

(
∆

√
n

V ?n

)

−K
√

log n

n
.

(102)

3. Fix 0 ≤ β ≤ 1
6 . If in (98), V ?n = 0 (which implies that

Vmin = 0 in (99), i.e. we drop the requirement in Theorems
7.1 and 7.2 that Vmin be positive), then there exists K ≥ 0
such that for all ∆ > A

n
1
2

+β
, where A > 0 is arbitrary

min
z∈D

P

[
n∑
i=1

Wi(z) ≤ n (D?
n + ∆)

]
≥ 1− K

A
3
2

1

n
1
4−

3
2β
.

(103)

Theorem 7 gives a general result on the minimization of a
cdf of a sum of independent random variables parameterized
by elements of a metric space: it says that the minimum is
approximately achieved by the sum with the largest mean,
under regularity conditions. The metric nature of the parameter
space is essential in making sure the means and the variances
of Wi(·) behave like continuous functions: assumptions (98)
and (97) essentially ensure that functions Dn(·) and Dn(z)
are well-behaved in the neighborhood of the optimum, while
assumption (96) guarantees that Dn(·) decays fast enough near
its maximum.

Before we proceed to prove Theorem 7, we recall the Berry-
Esseen refinement of the central limit theorem.

Theorem 8 (Berry-Esseen CLT, e.g. [36, Ch. XVI.5 Theorem
2]). Fix a positive integer n. Let Wi, i = 1, . . . , n be
independent. Then, for any real t∣∣∣∣∣P

[
n∑
i=1

Wi > n

(
Dn + t

√
Vn
n

)]
−Q(t)

∣∣∣∣∣ ≤ Bn√
n
, (104)

where

Dn =
1

n

n∑
i=1

E [Wi] , (105)

Vn =
1

n

n∑
i=1

Var [Wi] , (106)

Tn =
1

n

n∑
i=1

E
[
|Wi − E [Wi] |3

]
, (107)

Bn =
c0Tn

V
3/2
n

, (108)

and 0.4097 ≤ c0 ≤ 0.5600 (c0 ≤ 0.4784 for identically
distributed Wi).
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We also make note of the following lemma, which deals
with the behavior of the Q-function.

Lemma 4 ( [27, Lemma 4]). Fix b ≥ 0. Then, there exists
q ≥ 0 such that for all z ≥ − 1

2b and all n ≥ 1,

Q
(√
nz
)
−Q

(√
nz (1 + bz)

)
≤ q√

n
. (109)

We are now equipped to prove Theorem 7.

Proof of Theorem 7. To show (103), denote for brevity ζ =
d (z, z?) and write

P

[
n∑
i=1

Wi(z) > n (D?
n + ∆)

]

≤ P

[
n∑
i=1

Wi(z) > n

(
Dn(z) + `1ζ

2 − `2√
n
ζ − `3

n
+

A

n
1
2 +β

)]
(110)

≤ 1

n

F1ζ + F2√
n(

`1ζ2 − `2√
n
ζ − `3

n + A

n
1
2

+β

)2 (111)

≤ K

A
3
2

1

n
1
4−

3
2β
, (112)

where
• (110) uses (96) and the assumption on the range of ∆;
• (111) is due to Chebyshev’s inequality and V ?n = 0;
• (112) is by a straightforward algebraic exercise revealing

that ζ that maximizes the left side of (112) is proportional
to A

1
2

n
1
4

+ 1
2
β

.

We proceed to show (101) and (102).
Denote

gn(z) = P

[
n∑
i=1

Wi(z) ≤ n(D?
n −∆)

]
. (113)

Using (99) and (100), observe

c0Tn(z)

V
3
2
n (z)

≤ B =
c0Tmax

V
3
2

min

<∞. (114)

Therefore the Berry-Esseen bound yields:∣∣gn(z)−Q
(√
nνn(z)

)∣∣ ≤ B√
n
, (115)

where
νn(z) ,

Dn(z)−D?
n + ∆√

Vn(z)
. (116)

Denote
ν?n ,

∆√
V ?n

(117)

Since

gn(z) = Q(
√
nν?n) +

[
gn(z)−Q

(√
nνn(z)

)]
+
[
Q
(√
nνn(z)

)
−Q(

√
nν?n)

]
(118)

≥ Q(
√
nν?n)− B√

n
+
[
Q
(√
nνn(z)

)
−Q(

√
nν?n)

]
,

(119)

to show (101), it suffices to show that

Q(
√
nν?n)−min

z∈D
Q
(√
nνn(z)

)
≤ q√

n
(120)

for some q ≥ 0, and to show (102), replacing q with q
√

log n
in the right side of (120) would suffice.

Since Q is monotonically decreasing, to achieve the min-
imum in (120) we need to maximize

√
nνn(z). As will be

proven shortly, for appropriately chosen a, b, c > 0 we can
write

max
z∈D

νn(z) ≤ ν?n + bν?2n +
cδn√
n

(121)

for n large enough.
If

∆ ≥ −
√
Vmin

2b
= −A, (122)

then ν?n ≥ − 1
2b , and Lemma 4 applies to ν?n. So, using (121),

the fact that Q(·) is monotonically decreasing and Lemma 4,
we conclude that there exists q > 0 such that

Q
(√
nν?n

)
−min
z∈D

Q
(√
nνn(z)

)
≤ Q

(√
nν?n

)
−Q

(√
nν?n +

√
nbν?2n + cδn

)
(123)

≤ Q
(√
nν?n

)
−Q

(√
nν?n +

√
nbν?2n

)
+

c√
2π
δn (124)

≤ q√
n

+
c√
2π
δn, (125)

where
• (124) is due to

Q(z + ξ) ≥ Q(z)− ξ√
2π
, (126)

which holds for arbitrary z and ξ ≥ 0,
• (125) holds by Lemma 4 as long as ν?n ≥ − 1

2b .
Thus, (125) establishes (101) and (102). It remains to prove
(121). To upper-bound maxz∈D νn(z), denote for convenience

fn(z) =
Dn(z)−D?

n√
Vn(z)

, (127)

gn(z) =
1√
Vn(z)

, (128)

and note, using (96), (97), (99), (100) and (by Hölder’s
inequality)

Vn(z) ≤ T
2
3

max, (129)

that

fn(z?)− fn(z) =
Dn(z?)−D?

n√
Vn(z?)

− Dn(z)−D?
n√

Vn(z)
(130)

≥ `′1d2(z, z?)− `′2√
n
d(z, z?)− `′3

n
, (131)

where

`′1 = T
− 1

3
max`1, (132)

`′2 = V
− 1

2

min `2, (133)

`′3 = V
− 1

2

min (L1 + `3). (134)
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Observe that for a, b > 0∣∣∣∣ 1√
a
− 1√

b

∣∣∣∣ ≤ |a− b|
2 min {a, b}

3
2

, (135)

so, using (98) and (99), we conclude∣∣∣∣∣ 1√
Vn(z)

− 1√
V ?n

∣∣∣∣∣ ≤ F ′1d(z, z?) +
F ′2√
n
, (136)

where

F ′1 =
1

2
V
− 3

2

minF1, (137)

F ′2 =
1

2
V
− 3

2

minF2. (138)

Let z0 achieve the maximum maxz∈D νn(z), i.e.

max
z∈D

νn(z) = fn(z0) + ∆gn(z0). (139)

Using (136) and (131), we have,

νn(z0)− νn(z?)

= (fn(z0)− fn(z?)) + ∆ (gn(z0)− gn(z?)) (140)

≤ − `′1d2(z0, z
?) +

(
`′2√
n

+ |∆|F ′1
)
d(z0, z

?) +
2F ′2|∆|√

n

+
`′3
n

(141)

≤ 1

4`′1

(
`′2√
n

+ |∆|F ′1
)2

+
2F ′2|∆|√

n
+
`′3
n
, (142)

where (142) follows because the maximum of its left side is
achieved at d(z0, z

?) = 1
2`′1

(
`′2√
n

+ |∆|F ′1
)

. Using (96), (99),
(136), we upper-bound

νn(z?) ≤ ν?n +
F ′2|∆|√

n
+

`3
nVmin

+
`3F

′
2

n
3
2

. (143)

Applying (142) and (143) to upper-bound maxz∈D νn(z), we
have established (121) in which

b =
F ′21 T

2
3

max

4`′1
, (144)

where we used (98) and (129) to upper-bound ∆2 = ν?2n V
?
n ,

thereby completing the proof.

APPENDIX D
PROOF OF THE CONVERSE PART OF THEOREM 4

Given a finite set A, let P be the set of all distributions on
A that satisfy the cost constraint,

E [b(X)] ≤ β, (145)

which is a convex set in R|A|.
Leveraging an idea of Tomamichel and Tan [30], we will

weaken (24) by choosing PȲ n to be a convex combination of
non-product distributions with weights chosen to favor those
distributions that are close to PY ?n . Specifically (cf. [30]),

PȲ n(yn) =
1

A

∑
k∈K

exp
(
−|k|2

) n∏
i=1

PY|K=k(yi), (146)

where {PY|K=k, k ∈ K} are defined as follows, for some
c > 0,

PY|K=k(y) = PY?(y) +
ky√
nc
, (147)

K =

{
k ∈ Z|B| :

∑
y∈B

ky = 0,

− PY?(y) +
1√
nc
≤ ky√

nc
≤ 1− PY?(y)

}
, (148)

A =
∑
k∈K

exp
(
−|k|2

)
<∞. (149)

Denote by PΠ(Y) the minimum Euclidean distance approx-
imation of an arbitrary PY ∈ Q, where Q is the set of
distributions on the channel output alphabet B, in the set{
PY|K=k : k ∈ K

}
:

PΠ(Y) = PY|K=k? where k? = arg min
k∈K

∣∣PY − PY|K=k

∣∣ .
(150)

The quality of approximation (150) is governed by [30]∣∣PΠ(Y) − PY

∣∣ ≤√ |B|(|B| − 1)

nc
. (151)

We say that xn ∈ An has type PX̂ if the number of times each
letter a ∈ A is encountered in xn is nPX(a). An n-type is a
distribution whose masses are multiples of 1

n . Denote by PX̂
the minimum Euclidean distance approximation of PX in the
set of n-types, that is,

PX̂ = arg min
P∈P :

P is an n-type

|PX − P | . (152)

The accuracy of approximation in (152) is controlled by the
following inequality:∣∣PX − PX̂

∣∣ ≤ √|A| (|A| − 1)

n
. (153)

For each PX ∈ P , let xn ∈ An be an arbitrary sequence
of type PX̂, and lower-bound the sum in (146) by the term
containing PΠ(Y) to obtain:

Xn;Ȳ n(xn; yn, β) ≤
n∑
i=1

X;Π(Y) (xi, yi, β)

+ nc
∣∣PΠ(Y) − PY?

∣∣2 +A. (154)

Applying (146) and (154) to loosen (24), we conclude by
Theorem 3 that, as long as an (n,M, ε′) code exists, for an
arbitrary γ > 0,

ε′ ≥ min
PX∈P

P

[
n∑
i=1

Wi(PX) ≤ logM − γ −A

]
− exp (−γ) ,

(155)
where

Wi(PX) = X;Π(Y) (xi, Yi, β) + c
∣∣PΠ(Y) − PY?

∣∣2 , (156)

and Yi is distributed according to PY|X=xi .
4 To evaluate the

minimization on the right side of (155), we will apply Theorem

4Strictly speaking, the order of Wi(PX), i = 1, . . . , n depends on the
particular choice of sequence xn of type PX̂. However, since the distribution
of the sum

∑n
i=1Wi(PX) does not depend on their relative order, we may

choose this sequence arbitrarily.
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7 with D = P , z = PX, z? = PX? , Wi(·) in (156), and the
metric being the usual Euclidean distance in Rn.

Define the following functions P ×Q 7→ R+:

D(PX, PȲ) = E
[
X;Ȳ(X;Y, β)

]
+ c |PȲ − PY? |2 , (157)

V (PX, PȲ) = E
[
Var

[
X;Ȳ(X;Y, β) | X

]]
, (158)

T (PX, PȲ) = E
[∣∣X;Ȳ(X;Y, β)− E

[
X;Ȳ(X;Y, β)|X

]∣∣3] ,
(159)

where the expectations are with respect to PY|XPX.
With the choice in (156) the functions (93)–(95) are partic-

ularized to the following mappings P 7→ R+:

Dn(PX) = D
(
PX̂, PΠ(Y)

)
, (160)

Vn(PX) = V
(
PX̂, PΠ(Y)

)
, (161)

Tn(PX) = T
(
PX̂, PΠ(Y)

)
. (162)

and D?
n, V ?n are

D?
n = C(β), (163)

V ?n = V (β). (164)

We perform the minimization on the right side of (155)
separately for PX ∈ P?δ and PX ∈ P\P?δ , where

P?δ = {PX ∈ P : |PX − PX? | ≤ δ} . (165)

Assuming without loss of generality that all outputs in B are
accessible (meaning that for each y ∈ B, there exists x ∈ A
with PY|X(y|x) > 0; this implies in particular that PY?(y) > 0
for all y ∈ B), we choose δ > 0 so that

min
PX∈P?δ

min
y∈B

PY(y) = pmin > 0, (166)

2 min
PX∈P?δ

V (PX) ≥ V (β). (167)

To perform the minimization on the right side of (155) over
P?δ , we will invoke Theorem 7 with D = P?δ , the metric being
the usual Euclidean distance between |A|-vectors. Let us check
that the assumptions of Theorem 7 are satisfied. It is easy to
verify directly that the functions PX 7→ D(PX, PY), PX 7→
V (PX, PY), PX 7→ T (PX, PY) are continuous (and therefore
bounded) on P and infinitely differentiable on P?δ . Therefore,
assumptions (99) and (100) of Theorem 7 are met. To verify
that (96) holds, write, for ζ = |PX − PX? |,

C(β)−D
(
PX̂, PΠ(Y)

)
= C(β)−D (PX, PY)− `2√

n
ζ − `3

n
(168)

≥ `1ζ
2 − `2√

n
ζ − `3

n
, (169)

where all constants `1, `2, `3 are positive, and:

• to show (168), observe that for a fixed PȲ, D (·, PȲ) is
a linear function of PX, so in view of (153)∣∣D (PX̂, PΠ(Y)

)
−D

(
PX, PΠ(Y)

)∣∣ ≤ L1

n
. (170)

Furthermore,

D
(
PX, PΠ(Y)

)
= D (PX, PY) + c|PΠ(Y) − PY? |2 − c|PY − PY? |2

+ D(PY‖PΠ(Y)) (171)

≤ D (PX, PY) + c|PΠ(Y) − PY|2

+ 2c|PY − PY? ||PΠ(Y) − PY|+D(PY‖PΠ(Y)) (172)

≤ D (PX, PY) +
`2√
n
ζ +

`′3
n
, (173)

where we used the triangle inequality, (151), a “reverse
Pinsker inequality” [37, Lemma 6.3]:

D(Y‖Ȳ) ≤ log e

minb∈B PȲ(b)
|PY − PȲ|

2 (174)

and
|PY − PȲ| ≤ |PY|X||PX − PX̄|, (175)

where PX̄ → PY|X → PȲ, and the spectral norm of PY|X
satisfies |PY|X| ≤

√
|A|.

• (169) uses

E [X;Y(X;Y, β)] ≤ C(β)− `′1ζ2, (176)

where `′1 > 0, and

`1 = `′1 − c|A| (177)

can be made positive for a small enough c. Inequality
(176) can be shown following the reasoning in [20, (497)–
(505)] invoking (16) in lieu of the corresponding property
for the conventional information density. Here we provide
a simpler proof using Pinsker’s inequality. Viewing PX as
a vector and PY|X as a matrix, write

PX = PX? + v0 + v⊥, (178)

where v0 and v⊥ are projections of PX − PX? onto
KerPY|X and (KerPY|X)⊥ respectively, where

KerPY|X =
{
v ∈ R|A| : vTPY|X = 0

}
. (179)

We consider two cases v⊥ = 0 and v⊥ 6= 0 separately.
Condition v⊥ = 0 implies PX → PY|X → PY? , which
combined with PX 6= PX? and (16) means that the
complement of F = supp(PX?) is nonempty and

a , C(β)−max
x/∈F

E [X;Y?(x;Y, β)|X = x] (180)

is positive. Therefore

E [X;Y(X;Y, β)]

= E [X;Y?(X;Y, β)] (181)
= E [X;Y?(X;Y, β),X ∈ F ] + E [X;Y?(X;Y, β),X /∈ F ]

(182)
≤ C(β)PX (F ) + PX (F c) (C(β)− a) (183)

≤ C(β)− (λ+
min(P 2

F ))1/2a|v| (184)

≤ C(β)− 1

4
(λ+

min(P 2
F ))1/2a|v|2, (185)

where (183) uses (16), PF is the orthogonal projection
matrix onto F c and λ+

min(·) is the minimum nonzero
eigenvalue of the indicated positive semidefinite matrix.
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If v⊥ 6= 0, write

E [X;Y(X;Y, β)]

= E [X;Y?(X;Y, β)]−D(PY‖PY?) (186)

≤ E [X;Y?(X;Y, β)]− 1

2
|PY − PY? |2 log e (187)

≤ C(β)− 1

2
|PY − PY? |2 log e, (188)

where (187) is by Pinsker’s inequality, and (188) is by
(14). To conclude the proof of (176), we lower bound the
second term in (188) as follows.

|PY − PY? |2 =
∣∣∣(PX − PX?)

T
PY|X

∣∣∣2 (189)

=
∣∣vT⊥PY|X

∣∣2 (190)

≥ λmin(PY|X)|v⊥|2 (191)

≥ λ+
min(PY|XP

T
Y|X)λ+

min(P 2
⊥)|v|2, (192)

where P⊥ is the orthogonal projection matrix onto
(KerPY|X)⊥.

To establish (97), write

C(β)−D(PX̂, PΠ(Y)) ≤ C(β)−D(PX, PΠ(Y)) +
L1

n
(193)

≤ C(β)− E [X;Y(X;Y, β)] +
L1

n
,

(194)

where (193) is due to (170). Substituting X = X? into (194),
we obtain (97).

Finally, to verify (98), write∣∣V (PX̂, PΠ(Y)

)
− V (β)

∣∣
≤ |V (PX, PY)− V (β)|+

∣∣V (PX, PY)− V
(
PX̂, PY

)∣∣
+
∣∣V (PX̂, PΠ(Y)

)
− V

(
PX̂, PY

)∣∣ (195)

≤ F1|PX − PX? |+ F ′2|PX − PX̂|+ F ′′2
∣∣PΠ(Y) − PY

∣∣ (196)

≤ F1ζ +
F2√
n

(197)

where all constants F are positive, and
• (196) uses continuous differentiability of PX 7→
V (PX, PY) (in P?δ ) and PȲ 7→ V (PX, PȲ) (at any PȲ

with PȲ(Y) > 0 a.s.).
• (197) applies (153) and (151).
Theorem 7 is thereby applicable.
If V (β) > 0, letting

γ =
1

2
log n (198)

logM = nC(β)−
√
nV (β) Q−1

(
ε+

K + 1√
n

)
+

1

2
log n

+A, (199)

where constant K is the same as in (101), we apply Theorem
7. 1 to conclude that the right side of (155) with minimization
constrained to types in P?δ s lower bounded by ε:

min
PX∈P?δ

P

[
n∑
i=1

Wi(PX) ≤ logM − γ −A

]
− exp (−γ) ≥ ε.

(200)

If V (β) = 0, we fix 0 < η < 1− ε and let

γ = log
1

η
, (201)

logM = nC(β) +

(
K

1− ε− η

) 2
3

n
1
3 + log

1

η
, (202)

where A is that in (103). Applying Theorem 7.3 with β = 1
6 ,

we conclude that (200) holds for the choice of M in (202) if
V (β) = 0.

To evaluate the minimum over P\P?δ on the right side of
(155), define

C(β)− max
PX∈P\P?δ

E [X;Y(X;Y, β)] = 2∆ > 0 (203)

and observe

D(PX, PΠ(Y))

= E [X;Y(X;Y, β)] +D(Y‖Π(Y)) + c|PΠ(Y) − PY? |2 (204)
≤ E [X;Y(X;Y, β)] +D(Y‖Π(Y)) + 4c (205)

≤ E [X;Y(X;Y, β)] +
|B|(|B| − 1) log e√

nc
+ 4c, (206)

where

• (205) holds because the Euclidean distance between two
distributions satisfies

|PY − PȲ| ≤ 2, (207)

• (206) is due to (151), (174), and

min
Y

min
y∈B

PΠ(Y)(y) ≥ 1√
nc
, (208)

which is a consequence of (148).

Therefore, choosing c < ∆
4 , we can ensure that for all n

large enough,

C(β)− max
PX∈P\P?δ

D(PX, PΠ(Y)) ≥ ∆ > 0. (209)

Also, it is easy to show using (208) that there exists a > 0
such that

V (PX, PΠ(Y)) ≤ a log2 n. (210)

By Chebyshev’s inequality, we have, for the choice of γ in
(198) and M in (199),

max
PX∈P\P?δ

P

[
n∑
i=1

Wi(PX) > logM − γ −A

]

≤ P

[
n∑
i=1

Wi(PX)− E [Wi(PX)] >
n∆

2

]
(211)

≤ 4a

∆2

log2 n

n
. (212)

Combining (200) and (212) concludes the proof.
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APPENDIX E
PROOF OF THE ACHIEVABILITY PART OF THEOREM 4

The proof consists of the asymptotic analysis of the follow-
ing bound.

Theorem 9 (Dependence Testing bound [20]). There exists an
(M, ε, β) code with

ε ≤ inf
PX

E

[
exp

(
−
∣∣∣∣ıX;Y (X;Y )− log

M − 1

2

∣∣∣∣+
)]

, (213)

where the infimum is over all distributions supported on {x ∈
X : b(x) ≤ β}.

The following lemma will be instrumental.

Lemma 5 ([20, Lemma 47]). Let W1, . . . ,Wn be independent,
with Vn > 0 and Tn < ∞ where Vn and Tn are defined in
(106) and (107), respectively. Then for any γ > 0,

E

[
exp

{
−

n∑
i=1

Wi

}
1

{
n∑
i=1

Wi > log γ

}]

≤ 2

(
log 2√

2π
+

2Tn√
nVn

)
1

γ
√
nVn

. (214)

Let PXn be equiprobable on the set of sequences of
type PX̂? , where PX̂? is the minimum Euclidean distance
approximation of PX? formally defined in (152). Let PXn →
PY n|Xn → PY n , PX̂? → PY|X → PŶ? , and PŶ n? =
PŶ? × . . .× PŶ? .

The following lemma demonstrates that PY n is close to
PŶ n? .

Lemma 6. Almost surely, for n large enough and some
constant c,

ıY n‖Ŷ n?(Y n) ≤ 1

2
(|supp (PX?)| − 1) log n+ c (215)

Proof. For a vector k = (k1, . . . , k|B|), denote the multinomial
coefficient (

n

k

)
=

n!

k1!k2! . . . k|B|!
(216)

By Stirling’s approximation, the number of sequences of type
PX̂? satisfies, for n large enough and some constant c1 > 0(

n

nPX̂?

)
≥ c1n−

1
2 (|supp(PX? )|−1) exp

(
nH(X̂?)

)
(217)

On the other hand, for all xn of type PX̂?n ,

PX̂?n(xn) = exp
(
−nH(X̂?)

)
(218)

Assume without loss of generality that all outputs in B are
accessible, which implies that PY?(y) > 0 for all y ∈ B.
Hence, the left side of (215) is almost surely finite, and for

all yn ∈ Yn with nonzero probability according to PY n ,

PY n(yn)

PŶ n?(yn)
=

(
n

nPX̂?

)−1∑?
PY n|Xn=xn(yn)∑

xn∈An PY n|Xn=xn(yn)PX̂n?(xn)
(219)

≤

(
n

nPX̂?

)−1∑?
PY n|Xn=xn(yn)∑?

PY n|Xn=xn(yn)PX̂n?(xn)
(220)

=

(
n

nPX̂?

)−1∑?
PY n|Xn=xn(yn)

exp
(
−nH(X̂?)

)∑?
PY n|Xn=xn(yn)

(221)

=

(
n

nPX̂?

)−1

exp
(
nH(X̂?)

)
(222)

≤ c1n
1
2 (|supp(PX? )|−1), (223)

where we abbreviated
∑?

=
∑
xn : type(xn)=PX̂?

.

We first consider the case V (β) > 0. For c in (215) and
some γ > 0, let

log
M − 1

2
, Sn −

1

2
(|supp (PX?)| − 1) log n− c, (224)

Sn , nDn −
√
nVnQ

−1 (εn) , (225)

εn , ε− 2

(
log 2√

2π
+

2Tn√
nVn

)
1

γ
√
nVn

− Bn√
n
,

(226)

where Dn and Vn are those in (105) and (106), computed with
Wi = ıX;Ŷ?(xi, Yi), namely

Dn = E
[
ıX;Ŷ?(X̂?, Ŷ?)

]
(227)

Vn = Var
[
ıX;Ŷ?(X̂?, Ŷ?)|X̂?

]
(228)

Since the functions PX 7→ E [ıX;Y(X,Y)] and PX 7→
Var [ıX;Y(X,Y)|X] are continuously differentiable in a neigh-
borhood of PX? in which PY(Y) > 0 a.s., there exist constants
L1 ≥ 0, F1 ≥ 0 such that

|Dn − C(β)| ≤ L1|PX̂? − PX? |, (229)
|Vn − V (β)| ≤ F1|PX̂? − PX? |, (230)

where we used (21). Applying (153), we observe that the
choice of logM in (224) satisfies (35), (38). Therefore, to
prove the claim we need to show that the right side of (213)
with the choice of M in (224) is upper bounded by ε.

Weakening (213) by choosing PXn equiprobable on the set
of sequences of type PX̂? , as above, we infer that an (M, ε′, β)
code exists with
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ε′ ≤ E

[
exp

(
−
∣∣∣∣ıXn;Y n(Xn;Y n)− log

M − 1

2

∣∣∣∣+
)]

(231)

= E
[

exp
(
−
∣∣∣ n∑
i=1

ıX;Ŷ?(Xi;Yi)− ıY n‖Ŷ n?(Y n)

− log
M − 1

2

∣∣∣+)] (232)

≤ E

exp

− ∣∣∣∣∣
n∑
i=1

ıX;Ŷ?(Xi;Yi)− Sn

∣∣∣∣∣
+
 (233)

= E

exp

− ∣∣∣∣∣
n∑
i=1

ıX;Ŷ?(xi;Yi)− Sn

∣∣∣∣∣
+
 (234)

≤ exp (Sn) ·

E

[
exp

(
−

n∑
i=1

ıX;Ŷ?(xi;Yi)

)
1

{
n∑
i=1

ıX;Ŷ?(xi;Yi) > Sn

}]

+ P

[
n∑
i=1

ıX;Ŷ?(xi;Yi) ≤ Sn

]
(235)

≤ ε, (236)

where
• (233) applies Lemma 6 and substitutes (224);
• (234) holds for any choice of xn of type PX̂? be-

cause the (conditional on Xn = xn) distribution of
ıXn;Ŷ n?(xn;Y n) =

∑n
i=1 ıX;Ŷ?(xi;Yi) depends the

choice of xn only through its type;
• (236) upper-bounds the first term using Lemma 5, and

the second term using Theorem 8.
If V (β) = 0, let Sn in (224) be

Sn = nDn − 2γ, (237)

and let γ > 0 be the solution to

exp(−γ) +
F1

√
|A|(|A| − 1)

γ2
= ε, (238)

where F1 is that in (230). Note that such solution exists
because the function in the left side of (238) is continuous
on (0,∞), unbounded as γ → 0 and vanishing as γ → ∞.
The reasoning up to (234) still applies, at which point we
upper-bound the right-side of (234) in the following way:

ε′ ≤ exp (−γ)P

[
n∑
i=1

ıX;Ŷ?(xi;Yi) > Sn + γ

]

+ P

[
n∑
i=1

ıX;Ŷ?(xi;Yi) ≤ Sn + γ

]
(239)

≤ exp (−γ) +
nVn
γ2

(240)

≤ ε, (241)

where
• (240) upper-bounds the second probability using Cheby-

shev’s inequality;
• (241) uses V (α) = 0, (153) and (230).

APPENDIX F
PROOF OF THEOREM 4 UNDER THE ASSUMPTIONS OF

REMARK 3

Under assumption (a), every (n,M, ε, β) code with a maxi-
mal cost constraint can be converted to an (n+1,M, ε, β) code
with an equal cost constraint (i.e. equality in (22) is requested)
by appending to each codeword a coordinate xn+1 with

b(xn+1) = β −
n∑
i=1

b(xi). (242)

Since
∑n
i=1 b(xi) ≤ βn, the right side of (242) is no smaller

than β, and so by assumption (a) a coordinate xn+1 satisfying
(242) can be found. It follows that

M?
eq(n, ε, β) ≤M?

max(n, ε, β) ≤M?
eq(n+ 1, ε, β), (243)

where the subscript specifies the nature of the cost constraint.
We thus may focus only on the codes with equal cost con-
straint. The capacity-cost function can be expressed as (43) due
to (16). The converse part now follows by invoking (24) with
PȲ n = PY?× . . .×PY? and γ = 1

2 log n. A simple application
of the Berry-Esseen bound (Theorem 8) using assumption (c)
leads to the desired result.

To show the achievability part, we follow the proof in
Appendix E, drawing the codewords from PXn appearing in
assumption (d), replacing all minimum distance approxima-
tions by the true distributions, and replacing the right side of
(215) by fn.

APPENDIX G
DISPERSION-COST FUNCTION OF AN ADDITIVE

EXPONENTIAL CHANNEL

As shown in [32], the capacity-cost function is given by
(48), and Y? is exponential with mean 1 + β, i.e.

dPY?(y) =
1

1 + β
e−

y
1+β dy, (244)

which leads to the expression for b-tilted information density
in (47). Conditions (a)–(c) in Remark 3 are clearly satisfied.
To verify condition (d), let PXn be uniform on the (n − 1)-
simplex {xn ∈ Rn+ :

∑n
i=1 xi = nβ}. Then, the distribution

of Y n = Xn + Nn, where Nn is a vector of i.i.d. expo-
nential components with means 1, is a function of

∑n
i=1Ni

only. Since the same holds for Y n?, the log-likelihood ratio
ıY n‖Y n?(yn) is also a function of

∑n
i=1 yi only. Now, the

sum of n exponentially distributed random variables with
mean a has Erlang distribution, whose pdf is tn−1e−t/a

an(n−1)! dt, so
(assuming natural logarithms for ease of computation)

ıY n‖Y n?(yn) = L

(
n∑
i=1

yi, n

)
, (245)

L(t, n) , nβ − β

1 + β
t+ n loge(1 + β)

+ (n− 1) loge

(
1− nβ

t

)
. (246)
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A direct algebraic computation shows that for each n, the
maximum of L(·, n) is achieved at

t?(n) ,
1

2

(
nβ +

√
n
√
nβ2 + 4n(1 + β)− 4(1 + β)

)
.

(247)
Another computation verifies that L(t?(n), n) is monotoni-
cally decreasing in n, so

max
n,t

L(t, n) = L(t?(1), 1) (248)

=
β

1 + β
+ loge(1 + β), (249)

i.e. ıY n‖Y n?(yn) is bounded by a constant, and condition (d)
is satisfied.
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