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Abstract—This paper shows the strong converse and the disper-
sion of memoryless channels with cost constraints. The analysis
is based on a new non-asymptotic converse bound expressed in
terms of the distribution of a random variable termed the b-tilted
information density, which plays a role similar to that of the
information density in channel coding without cost constraints.
We also analyze the fundamental limits of lossy joint-source-
channel coding over channels with cost constraints.
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I. INTRODUCTION

This paper is concerned with the maximum channel coding

rate achievable at average error probability ǫ > 0 where the

cost of each codeword is constrained.

The capacity-cost function C(β) of a channel specifies the

maximum achievable channel coding rate compatible with van-

ishing error probability and with codeword cost not exceeding

β in the limit of large blocklengths. In this paper we consider

stationary memoryless channels with separable cost function,

i.e.

(i) PY n|Xn = PY|X × . . .× PY|X, with PY|X : A → B ;

(ii) bn(x
n) = 1

n

∑n

i=1 b(xi) where b : A → [0,∞] .

In this case,

C(β) = sup
E[b(X)]≤β

I(X;Y) (1)

A channel is said to satisfy the strong converse if ǫ → 1 as

n → ∞ for any code operating at a rate above the capacity.

For memoryless channels without cost constraints, the strong

converse was first shown by Wolfowitz: [1] treats the discrete

memoryless channel (DMC), while [2] generalizes the result

to memoryless channels whose input alphabet is finite while

the output alphabet is the real line. Arimoto [3] showed a

new converse bound stated in terms of Gallager’s random

coding exponent, which also leads to the strong converse for

the DMC. Kemperman [4] showed that the strong converse

holds for a DMC with feedback. For a particular discrete

channel with finite memory, the strong converse was shown

by Wolfowitz [5] and independently by Feinstein [6], a result

soon generalized to a more general stationary discrete channel

with finite memory [7]. In a more general setting not requiring

the assumption of stationarity or finite memory, Verdú and
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Han [8] showed a necessary and sufficient condition for a

channel without cost constraints to satisfy the strong converse.

In the special case of finite-input channels, that necessary and

sufficient condition boils down to the capacity being equal to

the limit of maximal normalized mutual informations. In turn,

that condition is implied by the information stability of the

channel [9], a condition which in general is not easy to verify.

As far as channel coding with input cost constraints, the

strong converse for DMC with separable cost was shown by

Csiszár and Körner [10, Theorem 6.11] and by Han [11,

Theorem 3.7.2]. Regarding continuous channels, the strong

converse has only been studied in the context of additive Gaus-

sian noise channels with the cost function being the power

of the channel input block, bn(x
n) = 1

n
|xn|2. In the most

basic case of the memoryless additive white Gaussian noise

(AWGN) channel, the strong converse was shown by Shan-

non [12] (contemporaneously with Wolfowitz’s finite alphabet

strong converse). Yoshihara [13] proved the strong converse

for the time-continuous channel with additive Gaussian noise

having an arbitrary spectrum and also gave a simple proof

of Shannon’s strong converse result. Under the requirement

that the power of each message converges stochastically to a

given constant β, the strong converse for the AWGN channel

with feedback was shown by Wolfowitz [14]. Note that in all

those analyses of the power-constrained AWGN channel the

cost constraint is meant on a per-codeword basis. In fact, the

strong converse ceases to hold if the cost constraint is averaged

over the codebook.

Channel dispersion quantifies the backoff from capacity,

unescapable at finite blocklengths due to the random nature

of the channel coming into play, as opposed to the asymptotic

representation of the channel as a deterministic bit pipe of

a given capacity. Polyansky et al. [15] found the dispersion

of the DMC without cost constraints as well as that of the

AWGN channel with a power constraint. Hayashi [16] showed

the dispersion of the DMC with and without cost constraints.

For constant composition codes over DMC, Moulin [17] found

the dispersion and refined the third order term in the expan-

sion of the maximum achievable code rate, under regularity

conditions.

In this paper, we show a new non-asymptotic converse

bound for general channels with input cost constraints in terms

of a random variable we refer to as the b-tilted information

density, which parallels the notion of d-tilted information for

lossy compression [18]. Not only does the new bound lead to

a general strong converse result but it is also tight enough to



find the channel dispersion-cost function, when coupled with

the corresponding achievability bound. More specifically, we

show that for the DMC, M⋆(n, ǫ, β), the maximum achievable

code size at blocklength n, error probability ǫ and cost β, is

given by

M⋆(n, ǫ, β) = nC(β)−
√

nV (β)Q−1 (ǫ) + o
(√

n
)

(2)

where V (β) is the dispersion-cost function, and Q−1 (·) is the

inverse of the Gaussian complementary cdf. Satisfyingly, the

capacity-cost and the dispersion-cost functions are given by

the mean and the variance of the b-tilted information density,

juxtaposing nicely with the corresponding results in [15]

(conventional information density without cost constraints)

and [18] (d-tilted information in rate-distortion theory). In

addition, we perform a refined analysis of the o (
√
n) term

in (2). In particular, we conclude that, under mild regularity

assumptions, the third order term is equal to 1
2 logn+O (1),

thereby refining Hayashi’s result [16].

Section II introduces the b−tilted information density. Sec-

tion III states the new non-asymptotic converse bound which

holds for a general channel with cost constraints, without

making any assumptions on the channel (e.g. alphabets, sta-

tionarity, memorylessness). An asymptotic analysis of the

converse and achievability bounds, including the proof of the

strong converse and the expression for the channel dispersion-

cost function, is presented in Section IV. Section V generalizes

the results in Sections III and IV to the lossy joint source-

channel coding setup.

II. b−TILTED INFORMATION DENSITY

In this section, we introduce the concept of b−tilted infor-

mation density and several relevant properties.

Fix the transition probability kernel PY |X : X → Y and the

cost function b : X 7→ [0,∞]. In the application of this single-

shot approach in Section IV, X , Y , PY |X and b will become

An, Bn, PY n|Xn in (i) and bn in (ii), respectively. Denote

C(β) = sup
PX :

E[b(X)]≤β

I(X ;Y ) (3)

λ⋆ = C
′(β) (4)

For a pair {PY |X , PȲ }, define

ıX;Ȳ (x; y) = log
dPY |X=x

dPȲ

(y) (5)

The familiar information density ıX;Y (x; y) between realiza-

tions of two random variables with joint distribution PXPY |X

follows by particularizing (5) to {PY |X , PY }, where PX →
PY |X → PY

1. In general, however, the function in (5) does

not require PȲ to be induced by any input distribution.

Further, define the function

X;Ȳ (x; y, β) = ıX;Ȳ (x; y)− λ⋆ (b(x)− β) (6)

1We write PX → PY |X → PY to indicate that PY is the marginal of

PXPY |X , i.e. PY (y) =
∑

x∈X PY |X(y|x)PX(x).

The special case of (6) with PȲ = PY ⋆ , where PY ⋆ is the

unique output distribution that achieves the supremum in (3),

defines b-tilted information density:

Definition 1 (b-tilted information density). The b-tilted infor-

mation density between x ∈ X and y ∈ Y is X;Y ⋆(x; y, β).

Since PY ⋆ is unique even if there are several (or none) input

distributions PX⋆ that achieve supremum in (3), there is no

ambiguity in Definition 1. If there are no cost constraints (i.e.

b(x) = 0 ∀x ∈ X ), then C′(β) = 0 regardless of β, and

X;Y ⋆(x; y, β) = ıX;Y ⋆(x; y) (7)

The counterpart of the b-tilted information density in rate-

distortion theory is the d-tilted information [18].

Denote

βmin = inf
x∈X

b(x) (8)

βmax = sup {β ≥ 0: C(β) < C(∞)} (9)

A nontrivial generalization of the well-known properties of

information density in the case of no cost constraints, the

following result highlights the importance of b-tilted infor-

mation density in the optimization problem (3). It will be of

key significance in the asymptotic analysis in Section IV.

Theorem 1. Fix βmin < β < βmax. Assume that PX⋆

achieving (3) is such that

E [b(X⋆)] = β (10)

C(β) = sup
PX

E [X;Y (X ;Y, β)] (11)

= sup
PX

E [X;Y ⋆(X ;Y, β)] (12)

= E [X;Y ⋆(X⋆;Y ⋆, β)] (13)

= E [X;Y ⋆(X⋆;Y ⋆, β)|X⋆] (14)

where (14) holds PX⋆ -a.s.

Corollary 2.

Var [X;Y ⋆(X⋆;Y ⋆, β)] = E [Var [X;Y ⋆(X⋆;Y ⋆, β)|X⋆]]
(15)

= E [Var [ıX;Y ⋆(X⋆;Y ⋆)|X⋆]] (16)

III. NEW CONVERSE BOUND

Converse and achievability bounds give necessary and suf-

ficient conditions, respectively, on (M, ǫ, β) in order for a

code to exist with M codewords and average error probability

not exceeding ǫ and β, respectively. Such codes (allowing

stochastic encoders and decoders) are rigorously defined next.

Definition 2 ((M, ǫ, β) code). An (M, ǫ, β) code for

{PY |X , b} is a pair of random transformations PX|S (en-

coder) and PZ|Y (decoder) such that P [S 6= Z] ≤ ǫ, where the

probability is evaluated with S equiprobable on an alphabet



of cardinality M , S −X − Y −Z , and the codewords satisfy

the maximal cost constraint (a.s.)

b(X) ≤ β (17)

The non-asymptotic quantity of principal interest is

M⋆(ǫ, β), the maximum code size achievable at error proba-

bility ǫ and cost β. Blocklength will enter into the picture later

when we consider (M,d, ǫ) codes for {PY n|Xn , bn}, where

PY n|Xn : An 7→ Bn and bn : An 7→ [0,∞]. We will call such

codes (n,M, d, ǫ) codes, and denote the corresponding non-

asymptotically achievable maximum code size by M⋆(n, ǫ, β).
For now, though, blocklength n is immaterial, as the converse

and achievability bounds do not call for any Cartesian set

structure of the channel input and output alphabets. Accord-

ingly, forgoing n, we state the converse for a generic pair

{PY |X , b}, rather than the less general {PY n|Xn , bn}.

Theorem 3 (Converse). The existence of an (M, ǫ, β) code

for {PY |X , b} requires that

ǫ ≥ inf
X

max
γ>0

{

sup
Ȳ

P
[

X;Ȳ (X ;Y, β) ≤ logM − γ
]

− exp(−γ)

}

(18)

≥ max
γ>0

{

sup
Ȳ

inf
x∈X

P
[

X;Ȳ (x;Y, β) ≤ logM − γ|X = x
]

− exp(−γ)

}

(19)

Proof. Fix an (M, ǫ) code {PX|S , PZ|Y }, γ > 0, and an

auxiliary probability distribution PȲ on Y . Since b(X) ≤ β,

we have

P
[

X;Ȳ (X ;Y, β) ≤ logM − γ
]

≤ P
[

ıX;Ȳ (X ;Y )− λ⋆(b(X)− β) ≤ logM − γ
]

(20)

≤ P
[

ıX;Ȳ (X ;Y ) ≤ logM − γ
]

(21)

= P
[

ıX;Ȳ (X ;Y ) ≤ logM − γ, Z 6= S
]

+ P
[

ıX;Ȳ (X ;Y ) ≤ logM − γ, Z = S
]

(22)

≤ P [Z 6= S]

+
1

M

M
∑

m=1

∑

x∈X

PX|S(x|m)
∑

y∈Y

PY |X(y|x)PZ|Y (m|y)

· 1
{

PY |X(y|x) ≤ PȲ (y)M exp (−γ)
}

(23)

≤ ǫ

+ exp(−γ)
∑

y∈Y

PȲ (y)

M
∑

m=1

PZ|Y (m|y)
∑

x∈X

PX|S(x|m)

≤ ǫ + exp (−γ) (24)

Optimizing over γ > 0 and the distribution of the auxiliary

random variable Ȳ , we obtain the best possible bound for a

given PX , which is generated by the encoder PX|S . Choosing

PX that gives the weakest bound to remove the dependence

on the code, (18) follows.

To show (19), we weaken (18) by moving infX inside supȲ ,

and write

inf
X

P
[

X;Ȳ (X ;Y, β) ≤ logM − γ
]

= inf
X

∑

x∈X

PX(x)P
[

X;Ȳ (x;Y, β) ≤ logM − γ|X = x
]

(25)

= inf
x∈X

P
[

X;Ȳ (x;Y, β) ≤ logM − γ|X = x
]

(26)

Remark 1. At short blocklengths, it is possible to get a better

bound by giving more freedom in (6) not restricting λ⋆ to be

(4).

Achievability bounds for channels with cost constraints can

be obtained from the random coding bounds in [15], [19]

by restricting the distribution from which the codewords are

drawn to satisfy b(X) ≤ β a.s. In particular, for the DMC, we

may choose PXn to be equiprobable on the set of codewords of

type which is closest to the input distribution PX⋆ that achieves

the capacity-cost function. As we will see in Section IV-C,

owing to (16), such constant composition codes achieve the

dispersion of channel coding under input cost constraints.

IV. ASYMPTOTIC ANALYSIS

In this section, we reintroduce the blocklength n into

the non-asymptotic converse of Section III, i.e. let X and

Y therein turn into Xn and Y n, and perform its analysis,

asymptotic in n.

A. Assumptions

The following basic assumptions hold throughout Section

IV.

(i) The channel is stationary and memoryless, PY n|Xn =
PY|X × . . .× PY|X.

(ii) The cost function is separable, bn(x
n) = 1

n

∑n
i=1 b(xi),

where b : A 7→ [0,∞].
(iii) The codewords are constrained to satisfy the maximal

power constraint (17).

(iv) supx∈A Var [X;Y⋆(x;Y, β)|X = x] = Vmax < ∞.

Under these assumptions, the capacity-cost function C(β) =
C(β) is given by (1). Observe that in view of assumption (i),

as long as PȲ n is a product distribution, PȲ n = PȲ×. . .×PȲ,

Xn;Ȳ n(xn; yn, β) =

n
∑

i=1

X;Ȳ(xi; yi, β) (27)

B. Strong converse

We show that if transmission occurs at a rate greater than

the capacity-cost function, the error probability must converge

to 1, regardless of the specifics of the code. Toward this end,

we fix some α > 0, we choose logM ≥ nC(β)+2nα, and we

weaken the bound (19) in Theorem 3 by fixing γ = nα and



PȲ n = PY⋆ × . . . × PY⋆ , where Y⋆ is the output distribution

that achieves C(β), to obtain

ǫ ≥ inf
xn∈An

P

[

n
∑

i=1

X;Y⋆(xi;Yi, β) ≤ nC(β) + nα

]

− exp(−nα) (28)

≥ inf
xn∈An

P

[

n
∑

i=1

X;Y⋆(xi;Yi, β) ≤
n
∑

i=1

c(xi) + nα

]

− exp(−nα) (29)

where for notational convenience we have abbreviated c(x) =
E [X;Y⋆(x;Y, β)|X = x], and (29) employs (12).

To show that the right side of (29) converges to 1, we

invoke the following law of large numbers for non-identically

distributed random variables.

Theorem 4 (e.g. [20]). Suppose that Wi are uncorrelated and
∑∞

i=1 Var
[

Wi

bi

]

< ∞ for some strictly positive sequence (bn)

increasing to +∞. Then,

1

bn

(

n
∑

i=1

Wi − E

[

n
∑

i=1

Wi

])

→ 0 in L2 (30)

Let Wi = X;Y⋆(xi;Yi, β) and bi = i. Since (recall (iv))

∞
∑

i=1

Var

[

1

i
X;Y⋆(xi;Yi, β)|Xi = xi

]

≤ Vmax

∞
∑

i=1

1

i2
(31)

by virtue of Theorem 4 the right side of (29) converges to

1, so any channel satisfying (i)–(iv) also satisfies the strong

converse.

As noted in [21, Theorem 77] in the context of the AWGN

channel, the strong converse does not hold if the power

constraint is averaged over the codebook, i.e. if, in lieu of

(17), the cost requirement is

1

M

M
∑

m=1

E [b(X)|S = m] ≤ β (32)

To see why, fix a code of rate C(β) < R < C(2β) none

of whose codewords costs more than 2β and whose error

probability vanishes as n increases, ǫ → 0. Since R < C(2β),
such a code exists. Now, replace half of the codewords with

the all-zero codeword (assuming b(0) = 0) while leaving the

decision regions of the remaining codewords untouched. The

average cost of the new code satisfies (32), its rate is greater

than the capacity-cost function, R > C(β), yet its average

error probability does not exceed ǫ + 1
2 → 1

2 .

C. Dispersion

First, we give the operational definition of the dispersion-

cost function of any channel.

Definition 3 (Dispersion-cost function). The channel

dispersion-cost function, measured in squared information

units per channel use, is defined by

V (β) = lim
ǫ→0

lim sup
n→∞

(nC(β) − logM⋆(n, ǫ, β))
2

2 loge
1
ǫ

(33)

An explicit expression for the dispersion-cost function of a

memoryless channel is given in the next result (the proof is

omitted due to space limitations).

Theorem 5. In addition to assumptions (i)–(iv), assume that

the capacity-achieving input distribution PX⋆ is unique and

that the channel has finite input and output alphabets.

M⋆(n, ǫ, β) = nC(β) −
√

nV (β)Q−1 (ǫ) + θ(n) (34)

C(β) = E [X;Y⋆(X⋆;Y⋆, β)] (35)

V (β) = Var [X;Y⋆(X⋆;Y⋆, β)] (36)

where PX⋆Y⋆ = PX⋆PY|X, and the remainder term θ(n)
satisfies:

a) If V (β) > 0,

−1

2
(|supp (PX⋆)| − 1) logn+O (1) ≤ θ(n) (37)

≤ 1

2
logn+O (1)

(38)

b) If V (β) = 0, (37) holds, and (38) is replaced by

θ(n) ≤ O
(

n
1

3

)

(39)

Remark 2. According to a recent result of Moulin [17],

the achievability bound on the remainder term in (38) can

be tightened to match the converse bound in (38), thereby

establishing that θ(n) = 1
2 logn + O (1), provided that the

following regularity assumptions hold:

• The random variable ıX;Y⋆(X⋆;Y⋆) is of nonlattice type;

• supp(PX⋆) = A;

• Cov
[

ıX;Y⋆(X⋆;Y⋆), ıX;Y(X̄
⋆;Y⋆)

]

< Var [ıX;Y⋆(X⋆;Y⋆)]
where

PX̄⋆X⋆Y⋆(x̄, x, y) = 1
PY⋆ (y)

PX⋆(x̄)PY|X(y|x̄)PY|X(y|x)PX⋆(x).

V. JOINT SOURCE-CHANNEL CODING

In this section we state the counterparts of Theorems 3 and

5 in the lossy joint source-channel coding setting. Proofs of

the results in this section are obtained by fusing the proofs in

Sections III and IV and those in [19].

A joint source-channel coding problem arises if the source

is no longer equiprobable on an alphabet of cardinality M ,

as in Definition 2, but is rather arbitrarily distributed on

an abstract alphabet M. Further, instead of reproducing the

transmitted S under a probability of error criterion, we might

be interested in approximating S within a certain distortion,

so that a decoding failure occurs if the distortion between the

source and its reproduction exceeds a given distortion level d,

i.e. if d(S,Z) > d. A (d, ǫ, β) code is a code for a fixed

source-channel pair such that the probability of exceeding

distortion d is no larger than ǫ and no channel codeword costs

more than β. A (d, ǫ, β) code in a block coding setting, when

a source block of length k is mapped to a channel block

of length n, is called a (k, n, d, ǫ, β) code. The counterpart

of the b-tilted information density in lossy compression is

the d-tilted information, S(s, d), which, in a certain sense,



quantifies the number of bits required to reproduce the source

outcome s ∈ M within distortion d. For rigorous definitions

and further details we refer the reader to [19].

Theorem 6 (Converse). The existence of a (d, ǫ, β) code for

S and PY |X requires that

ǫ ≥ inf
PX|S

max
γ>0

{

sup
Ȳ

P
[

S(S, d)− X;Ȳ (X ;Y, β) ≥ γ
]

− exp (−γ)

}

(40)

≥ max
γ>0

{

sup
Ȳ

E

[

inf
x∈X

P
[

S(S, d)− X;Ȳ (x;Y, β) ≥ γ | S
]

]

− exp (−γ)

}

(41)

where the probabilities in (40) and (41) are with respect to

PSPX|SPY |X and PY |X=x, respectively.

Under the usual memorylessness assumptions, applying

Theorem 4 to the bound in (41), it is easy to show that the

strong converse holds for lossy joint source-channel coding

over channels with input cost constraints. A more refined

analysis leads to the following result.

Theorem 7 (Gaussian approximation). Assume the channel

has finite input and output alphabets. Under restrictions (i)–

(iv) of [19] and (ii)–(iv) of Section IV-A, the parameters of

the optimal (k, n, d, ǫ) code satisfy

nC(β)− kR(d) =
√

nV (β) + kV(d)Q−1 (ǫ) + θ (n) (42)

where V(d) = Var [S(S, d)], V (β) is given in (36), and the

remainder θ (n) satisfies, if V (β) > 0,

−1

2
logn+O

(

√

logn
)

≤ θ(n) (43)

≤ θ̄(n) +

(

1

2
|supp(PX⋆)| − 1

)

logn

where θ̄(n) denotes the upper bound on θ(n) given in [19,

Theorem 10]. If V (β) = 0, the upper bound on θ(n) stays the

same, and the lower one becomes (39).

VI. CONCLUSION

We introduced the concept of b-tilted information density

(Definition 1), a random variable whose distribution plays the

key role in the analysis of optimal channel coding under input

cost constraints. We showed a new converse bound (Theorem

3), which gives a lower bound on the average error probability

in terms of the cdf of the b-tilted information density. The

properties of b-tilted information density listed in Theorem

1 play a key role in the asymptotic analysis of the bound

in Theorem 3 in Section IV, which does not only lead to the

strong converse and the dispersion-cost function when coupled

with the corresponding achievability bound, but it also proves

that the third order term in the asymptotic expansion (2) is

upper bounded (in the most common case of V (β) > 0) by
1
2 logn+O (1). In addition, we showed in Section V that the

results of [19] generalize to coding over channels with cost

constraints and also tightened the estimate of the third order

term in [19]. As propounded in [22], the gateway to refined

analysis of the third order term is an apt choice of a non-

product distribution PȲ n in the bounds in Theorems 3 and

6.
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