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Optimum Power and Rate Allocation for
Coded V-BLAST: Instantaneous Optimization

Victoria Kostina and Sergey Loyka

Abstract—Several instantaneous optimization strategies for
rate and/or power allocation in the coded V-BLAST are stud-
ied analytically. Outage probabilities and system capacities of
these strategies in a spatial multiplexing system are compared
under generic settings. The conventional waterfilling algorithm
is shown to be suboptimal for the coded V-BLAST and a
new algorithm ("fractional water-filling") is proposed, which
simultaneously maximizes the system capacity and minimizes
the outage probability. Closed-form performance analysis of the
considered algorithms is given, and the fractional water-filling
algorithm is shown to attain the full MIMO channel diversity,
significantly outperforming other strategies. Many of the results
also apply to generic multi-stream transmission systems (e.g.
spatial multiplexing on the channel eigenmodes, OFDM) or the
systems relying on successive interference cancelation (multi-user
detection, channel equalization).

Index Terms—Multi-antenna (MIMO) system, spatial mul-
tiplexing, coded V-BLAST, power/rate allocation, waterfilling,
performance analysis.

I. INTRODUCTION

IN the first part of this paper [1], we have developed
optimum allocations of average power and/or rate to im-

prove the performance of coded V-BLAST, and analyzed the
performance improvement. The average optimization, which
is based on the channel statistics and the average SNR, is
motivated by lower implementation complexity and smaller
demand on system resources (i.e. average rather than instan-
taneous feedback). However, its performance is in general
inferior to instantaneous optimization, which is performed for
each channel realization. Therefore, in this part we consider
an instantaneous optimization of power and rate allocation,
develop closed-form analytical solutions and present their
performance analysis. The emphasis is on analytical tools and
solutions rather than on numerical algorithms and simulations.

Several techniques have been reported to improve the error
performance of the uncoded V-BLAST by employing a non-
uniform power and/or rate allocation among the transmitters
(Tx) [2]-[6]. Uncoded systems, however, are rare and most
practical systems are coded. This motivates the study of coded
V-BLAST. While the error rate analysis of coded systems is
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a formidable task hardly possible in a closed-from (except
for some special cases) [7], the analysis becomes feasible
when powerful capacity-approaching codes are used (e.g.
LDPC, turbo-codes or polar codes). Following this philosophy
advocated in [8][9], we will assume in this paper that capacity-
achieving temporal codes1 are used for each stream in the
V-BLAST, so that the per-stream rates are equal to the
corresponding capacities and there are no errors when streams
are not in outage, and also no error propagation in-between
the streams.

This approach has been used by Zhang et al. [11], who
considered an instantaneous optimization of power, rate and
antenna mapping for the coded ZF V-BLAST to minimize the
total transmit power for given data rate under zero outage
constraint, assuming capacity-achieving temporal codes or
realistic ones via an SNR gap to capacity. The optimization
in [11] is carried out under zero outage constraint, which
requires unlimited power investment into particularly bad
channel realizations (to support the target rate) and is not
feasible when the peak power is constrained (i.e. by an RF
power amplifier). Unlike [11], we allow non-zero outage
probability and minimize it by proper power/rate allocation,
under the total instantaneous power constraint, which auto-
matically constraints the peak power as well. While [11]
makes use of the conventional waterfilling (WF) algorithm to
assign powers and rates, we show that this algorithm does not
achieve the maximum V-BLAST system capacity2 (because
of the successive interference cancelation (SIC)) and propose
a new algorithm termed "fractional waterfilling" (FWF) that
does maximize the system capacity. While the complexity of
the proposed FWF is higher compared to the conventional
WF, its incremental complexity is small when the number of
transmitters is not too large, as in realistic MIMO systems. It
is shown that the FWF is superior to the conventional WF in
terms of the outage probability; for a given channel realization,
the FWF converges to the conventional WF at high SNR in
full-rank channels, and is significantly superior at low SNR.

While efficient numerical algorithms developed in [11]
are naturally welcome from the practical perspective, they
offer only limited insight and require numerical simulations
to evaluate the performance. Therefore, we concentrate on
analytical development and performance evaluation in this
paper. To the best of our knowledge, it is the first time when
the outage performance of a waterfilling algorithm is presented
in a closed form.

1this can also be extended to realistic codes by using the SNR gap to
capacity, as in [10][11].

2The system capacity is the capacity of an extended channel, which includes
the channel itself and also the V-BLAST transmission/processing architecture.
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We consider instantaneous (per-stream) rate allocation
(IRA), instantaneous (per-stream) power allocation (IPA), and
joint instantaneous power/rate allocation (IPRA) to minimize
the outage probability or to maximize the system capacity
of the coded V-BLAST under the constrained total transmit
power and a given target rate. Since the total transmit power
is limited, the peak power of RF amplifiers is limited as well.
The main contributions of the paper are as follows:
∙ A comparison of various power/rate optimization strate-

gies for a generic spatial multiplexing system (not only V-
BLAST) is given in section III. In particular, the maximization
of the instantaneous system capacity (via the IPRA) is shown
to also minimize the outage probability and, thus, the two
problems are equivalent, under arbitrary fading distribution.
The importance of this is due to the fact that the minimization
of the outage probability is a challenging, non-convex problem
with multiple solutions, while the maximization of the instan-
taneous capacity is an easier convex problem with a unique
solution. While there is a number of strategies to minimize
the outage probability, only the FWF algorithm simultaneously
minimizes the outage probability and maximizes the system
capacity of the coded V-BLAST.
∙ An optimum instantaneous power allocation to maximize

the system capacity of a multi-stream transmission (e.g. V-
BLAST, spatial multiplexing on channel eigenmodes, OFDM)
under uniform rate allocation is presented in Section V.
∙ The conventional WF algorithm is shown to be suboptimal

for the V-BLAST. To maximize the V-BLAST capacity via the
IPRA, the fractional waterfilling algorithm is proposed and its
key properties are analyzed (Theorem 4, Corollaries 4-6 in
section VI). The FWF is proven to give a solution of the
(non-convex) optimization problem of minimizing the outage
probability subject to the total power constraint.
∙ Performance analysis of the IRA, the IPA, the WF and

the FWF is presented in section VII. In the low outage regime,
the WF achieves the same diversity gain as the IRA, while the
FWF brings in an additional diversity gain, achieving the full
MIMO channel diversity (Corollary 9) and attaining simul-
taneously the minimum possible outage probability and the
maximum system capacity under the total power constraint.
In the low rate (also known as wideband) regime, the outage
probabilities of the instantaneous optimization strategies are
found in explicit, closed form (Theorem 5).
∙ Section VIII gives some examples to compare the average

and instantaneous optimization, to demonstrate the superiority
of the FWF and to validate the analytical results and conclu-
sions via simulations.

Many of these results also apply to generic multi-stream
transmission systems (e.g. spatial multiplexing on the channel
eigenmodes, OFDM) and also to multiuser detection and inter-
symbols equalization systems that use successive interference
cancelation.

II. SYSTEM MODEL

Motivated by lower complexity and to make the analysis
feasible, we consider unordered ZF V-BLAST. The basic
system model follows that in [1] and is summarized below
for completeness.

The standard baseband discrete-time MIMO system model
is,

r = HΛs+ 𝝃 =
∑𝑚

𝑖=1
h𝑖
√
𝛼𝑖𝑠𝑖 + 𝝃 (1)

where s = [𝑠1, 𝑠2, ...𝑠𝑚]𝑇 and r = [𝑟1, 𝑟2, ...𝑟𝑛]
𝑇 are the

vectors representing the Tx and Rx symbols respectively, “𝑇 ”
denotes transposition, H = [h1,h2, ...h𝑚] is the 𝑛×𝑚 matrix
of the complex channel gains between each Tx and each Rx
antenna, where h𝑖 denotes i-th column of H, 𝑛 and 𝑚 are the
numbers of Rx and Tx antennas respectively, 𝑛 ≥ 𝑚, 𝝃 is the
vector of circularly-symmetric additive white Gaussian noise
(AWGN), which is independent and identically distributed
(i.i.d.) in each receiver, Λ = 𝑑𝑖𝑎𝑔

(√
𝛼1, . . . ,

√
𝛼𝑚

)
, where

𝛼𝑖 is the power allocated to the 𝑖-th transmitter. For the
regular V-BLAST, the total power is distributed uniformly
among the transmitters, 𝛼1 = 𝛼2 = ... = 𝛼𝑚 = 1. The
channel will be assumed to be either ergodic ("fast fading"),
in which case the key performance measure is the ergodic
system capacity, or non-ergodic ("slow fading"), in which case
the key performance measures are the outage probability and
the outage capacity and also the instantaneous system capacity
(for given channel realization) [8]. Details of a mathematical
model of the uncoded V-BLAST, on which our model of the
coded V-BLAST is based, and its analysis can be found in
[2][12][6] and are omitted here.

III. INSTANTANEOUS VS. AVERAGE OPTIMIZATION

Let us consider a generic multi-stream transmission system
(e.g. spatial multiplexing, OFDM, multi-user) operating in a
fading channel of generic statistics (not only i.i.d. Rayleigh),
which is quasi-static (non-ergodic or "slow fading"). The main
performance indicator in this setting is the system outage
probability 3, i.e. the probability that the system cannot support
a target total rate 𝑚𝑅 [8],

𝑃𝑜𝑢𝑡 = Pr{𝐶 < 𝑚𝑅} (2)

where 𝐶 is the instantaneous (i.e. for given channel realiza-
tion) system capacity (i.e. the sum of per-stream capacities),
and an optimization strategy should target this measure. On the
other hand, when the channel is ergodic, the mean (ergodic)
capacity 𝐶 is an appropriate performance measure and its
optimization is of interest. In both scenarios, the optimization
can be instantaneous (i.e. for each channel realization) or
average (i.e. based on the channel statistics), and may include
per-stream power, rate or joint power/rate allocation.

In this section, we compare the performance of four differ-
ent optimization strategies:
∙ average power and/or rate allocation to maximize the

mean capacity,

𝜶𝐶 = argmax
𝜶(𝛾0)

𝐶(𝜶), (3)

∙ average power and/or rate allocation to minimize the
outage probability,

𝜶𝑜𝑢𝑡 = argmin
𝜶(𝛾0)

𝑃𝑜𝑢𝑡(𝜶), (4)

3which is also the best achievable codeword error probability for sufficiently
long codewords [16][17].
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∙ instantaneous power and/or rate allocation to maximize
the instantaneous system capacity (this will automatically
maximize the ergodic capacity as well),

𝜶𝐶 = argmax
𝜶(𝛾0,H)

𝐶(𝜶), (5)

∙ instantaneous power and/or rate allocation to minimize
the outage probability,

𝜶𝑜𝑢𝑡 = argmin
𝜶(𝛾0,H)

𝑃𝑜𝑢𝑡(𝜶), (6)

and 𝐶, 𝐶 and 𝑃𝑜𝑢𝑡 are considered as functions of the power
and/or rate allocation 𝜶 4, all subject to the total power∑𝑚

𝑖=1 𝛼𝑖 = 𝑚 constraint, where 𝜶 (𝛾0) and 𝜶 (𝛾0,H) indicate
average and instantaneous optimizations respectively, and 𝛾0
is the average SNR.

The following Lemma will be instrumental.

Lemma 1. Consider two optimization strategies 𝜶1 and 𝜶2

(power and/or rate) such that 𝐶1 = 𝐶(𝜶1) ≥ 𝐶(𝜶2) =
𝐶2 ∀H. Then the corresponding outage probabilities are also
ordered likewise,

𝑃 1
𝑜𝑢𝑡 = Pr{𝐶1 < 𝑚𝑅} ≤ Pr{𝐶2 < 𝑚𝑅} = 𝑃 2

𝑜𝑢𝑡 (7)

Proof: Define the outage sets 𝒪𝑖 = {H : 𝐶𝑖 < 𝑅}, 𝑖 =
1, 2. The outage probabilities can then be expressed as 𝑃 𝑖

𝑜𝑢𝑡 =
Pr{H ∈ 𝒪𝑖}. From 𝐶1 ≥ 𝐶2, it follows that 𝒪1 ⊆ 𝒪2, and
thus 𝑃 1

𝑜𝑢𝑡 ≤ 𝑃 2
𝑜𝑢𝑡.

We are now in a position to compare the optimization
strategies in (3)-(6).

Theorem 1. The outage probabilities of the optimization
strategies in (3)-(6) are ordered as follows,

Pr{𝐶(𝜶𝐶) < 𝑚𝑅} ≥ Pr{𝐶(𝜶𝑜𝑢𝑡) < 𝑚𝑅} (8)

≥ Pr{𝐶(𝜶𝑜𝑢𝑡) < 𝑚𝑅} = 𝑃 ★
𝑜𝑢𝑡 (9)

= Pr{𝐶(𝜶𝐶) < 𝑚𝑅} (10)

i.e. the instantaneous optimizations of the capacity and outage
probability achieve the same lowest outage probability 𝑃 ★

𝑜𝑢𝑡,
the average optimization of the outage probability gives an in-
termediate result, and the average optimization of the ergodic
capacity is the worst.

Proof: The inequality in (8) is by the definition of
𝜶𝑜𝑢𝑡 (i.e. 𝜶𝑜𝑢𝑡 is the best average power/rate allocation
that minimizes 𝑃𝑜𝑢𝑡). The inequality in (9) is because the
instantaneous optimization of 𝑃𝑜𝑢𝑡 cannot be worse than
the average one. To prove the equality in (10) note that
𝑃 ★
𝑜𝑢𝑡 ≤ Pr{𝐶(𝜶𝐶) < 𝑚𝑅} (by the definition of 𝜶𝑜𝑢𝑡) and

also that 𝐶(𝜶𝐶) ≥ 𝐶(𝜶𝑜𝑢𝑡) (by the definition of 𝜶𝐶 ). Using
the last inequality and Lemma 1, 𝑃 ★

𝑜𝑢𝑡 ≥ Pr{𝐶(𝜶𝐶) < 𝑚𝑅}.
Combining this with the opposite inequality above, (10)
follows. It can be shown (by examples) that none of the
inequalities in Theorem 1 can be strengthened to equalities,
in general.

Another important performance metric is the outage ca-
pacity 𝐶𝜖 defined as the maximum rate supported by
the system with constrained outage probability [8], 𝐶𝜖 =

4to simplify the notations, rate allocation is also included in 𝜶 here.

Fig. 1. Possible channel realizations are divided into different sets for
optimization of the outage probability: if H falls into the no-outage set
{ℰ−𝒪𝑢}, no optimization is necessary; the goal of any optimization strategy
is to shrink the unoptimized outage set 𝒪𝑢.

max𝑅 {𝑃𝑜𝑢𝑡(𝑅) ≤ 𝜖}. The following corollary is immediate
from Theorem 1.

Corollary 1. The outage capacities 𝐶𝜖 of the optimization
strategies above are ordered as follows:

𝐶𝜖(𝜶𝐶) ≤ 𝐶𝜖(𝜶𝑜𝑢𝑡) ≤ 𝐶𝜖(𝜶𝐶) = 𝐶𝜖(𝜶𝑜𝑢𝑡)

As a side remark, we note that even though 𝐶𝜖(𝜶𝐶) =
𝐶𝜖(𝜶𝑜𝑢𝑡), the corresponding ergodic capacities are not nec-
essarily the same: while 𝜶𝐶 maximizes the ergodic capacity,
𝜶𝑜𝑢𝑡 does not, in general (see Corollary 2). The importance of
(10) in Theorem 1 is due to the fact that while the problem in
(6) is non-convex (as we show below, it has multiple solutions)
and very difficult to deal with in general, either numerically or
analytically, the problem in (5) has a well-known solution via
the waterfilling (when no successive interference cancelation
is used at the receiver) or via the fractional waterfilling for the
coded V-BLAST (see Section VI). Since the two problems in
(5) and (6) are equivalent (achieve the same minimum 𝑃𝑜𝑢𝑡),
the solution of (5) also applies to (6). Let us now consider the
problem in (6) in more detail.

Proposition 1. Instantaneous optimization of the outage prob-
ability in (6) is in general a non-convex problem with infinite
number of solutions, one of which is the solution to the
problem in (5), and all of them achieve the same 𝑃 ★

𝑜𝑢𝑡.
Proof: Let 𝐶(𝜶) be the instantaneous capacity for given

power allocation 𝜶 and 𝒪(𝜶) = {H : 𝐶(𝜶) < 𝑚𝑅} be
the corresponding outage set. To minimize 𝑃𝑜𝑢𝑡 = Pr{H ∈
𝒪(𝜶)} is to minimize the set 𝒪(𝜶), which is obviously
accomplished by maximizing 𝐶(𝜶) for each H, i.e. via (5). To
demonstrate that this is not the only solution, we note that no
optimization is necessary for all H such that 𝐶(1, ..., 1) ≥ 𝑚𝑅
(i.e. if the unoptimized instantaneous capacity is not less than
the target rate 𝑚𝑅) since such optimization, while increasing
the capacity, will not shrink the outage set and, thus, will
not reduce the outage probability (see Fig. 1). Thus, any
power allocation can be used in such a case provided that
the resulting capacity does not drop below 𝑚𝑅.

The Corollary below gives some examples.

Corollary 2. Examples of several strategies to minimize 𝑃𝑜𝑢𝑡:
1) 𝜶 = 𝜶𝐶 in (5) for any H optimizes both 𝐶 and 𝑃𝑜𝑢𝑡.
2) 𝜶 = 𝜶𝐶 in (5) for H ∈ 𝒪𝑢, where 𝒪𝑢 = {H :

𝐶(1, ..., 1) < 𝑚𝑅} is the unoptimized outage set, and
uniform otherwise, optimizes 𝑃𝑜𝑢𝑡 but not necessarily 𝐶.

3) In an iterative numerical algorithm to find 𝜶, stop
optimization as soon as 𝐶(𝜶) ≥ 𝑚𝑅.
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4) 𝜶 = 𝜶𝐶 for H ∈ {𝒪𝑢 − 𝒪★}, where 𝒪★ = {H :
𝐶(𝜶𝐶) < 𝑚𝑅} is the optimized outage set (outage
takes place even if the full optimum power allocation
is performed), and uniform otherwise.

Note that these strategies are not the same, yet they achieve
the same 𝑃 ★

𝑜𝑢𝑡, which implies that 𝑃𝑜𝑢𝑡 should not be re-
lied on as the only performance/optimization criterion of a
communication system. It should be used in conjunction with
other performance measures, such as 𝐶. In general, a good
optimization strategy should optimize both 𝑃𝑜𝑢𝑡 and 𝐶, as
strategy #1 in Corollary 2.

IV. INSTANTANEOUS RATE ALLOCATION (IRA)

Here, we consider the optimum instantaneous rate allocation
(IRA) with the uniform power allocation, 𝛼𝑖 = 1, across all
streams of the coded V-BLAST.

With the uniform rate allocation, i.e. when the per-stream
target rate is 𝑅, the system outage takes place if any of the
streams is not able to support this rate, i.e. if the capacity of
at least one stream is lower than the target rate,

𝑃𝑢
𝑜𝑢𝑡 = Pr {𝐶𝑖 < 𝑅 ∃𝑖} = 1−

𝑚∏
𝑖=1

(1 − Pr{𝐶𝑖 < 𝑅}); (11)

where 𝐶𝑖 = ln(1 + 𝑔𝑖𝛾0) is the instantaneous capacity of 𝑖-th
stream in [nat/s/Hz], 𝑔𝑖 = ∣h𝑖⊥∣2 is 𝑖-th stream power gain,
h𝑖⊥ is i-th column of the channel matrix projected onto the
subspace orthogonal to span{h𝑖+1, . . . ,h𝑚}; we also used
the fact that in the i.i.d. Rayleigh fading channels different 𝑔𝑖
are independent of each other [2][12].

When an optimum rate allocation is employed and capacity-
achieving codes are used for each stream, the per-stream rates
are set equal to the corresponding per-stream instantaneous
capacities 𝐶𝑖 and the total rate equals to the system capacity
𝐶𝐼𝑅𝐴 =

∑
𝑖𝐶𝑖. The system outage probability is then given

by

𝑃 𝐼𝑅𝐴
𝑜𝑢𝑡 = Pr

{∑
𝑖

𝐶𝑖 < 𝑚𝑅

}
, (12)

i.e. the outage takes place only when the sum capacity is below
the target rate 𝑚𝑅 (compare to (11) where an outage takes
place when at least one 𝐶𝑖 < 𝑅).

V. INSTANTANEOUS POWER ALLOCATION (IPA)

In this section, we consider optimum allocation of instanta-
neous power subject to the total power constraint and when all
the stream rates are the same (e.g. the same modulation/coding
to simplify the system design). In this case, an achievable per-
stream rate 𝑅 satisfies 𝑅 ≤ 𝐶𝑖 = ln(1 + 𝑔𝑖𝛼𝑖𝛾0) ∀𝑖 so that
the system capacity for given 𝜶 is

𝐶(𝜶) = 𝑚max
𝑅

{𝑅 : 𝑅 ≤ 𝐶𝑖 ∀𝑖} = 𝑚min
𝑖

ln(1 + 𝛼𝑖𝑔𝑖𝛾0)

(13)

and the optimization problem can be formulated as follows:

𝐶𝐼𝑃𝐴 = 𝑚max
𝜶

min
𝑖

ln(1 + 𝛼𝑖𝑔𝑖𝛾0), s.t.
∑
𝑖

𝛼𝑖 = 𝑚, 𝛼𝑖 ≥ 0

(14)

The following Theorem gives its solution.

Theorem 2 (IPA). The system capacity of the IPA in (14)
under the condition 𝑔𝑖 > 0 is

𝐶𝐼𝑃𝐴 = 𝑚 ln(1 + 𝑔𝛾0) (15)

and 0 otherwise, where 𝑔 = ( 1
𝑚

∑
𝑖 𝑔

−1
𝑖 )−1 is the harmonic

mean per-stream gain. It is achieved by the following power
allocation:

𝛼𝑖 = 𝑔/𝑔𝑖, (16)

i.e. the channel inversion is the optimum strategy in this case.
Proof: See Appendix.

Corollary 3. The power allocation in (16) also achieves the
minimum outage probability and the maximum outage capacity
under the total power constraint and uniform rate allocation.

Proof: Follows immediately from Theorem 1 and Corol-
lary 1.

Note from (15) that all per-stream rates are the same and
equal to ln(1 + 𝑔𝛾0). It follows from (16) that weak streams
get more power than strong ones, which is similar to the
power allocation of the uncoded V-BLAST in [6], and just
the opposite of the optimum joint power/rate allocations in
the next section. The condition 𝑔𝑖 > 0 can be easily ensured
in practice by deactivating all zero-gain streams.

The system capacity 𝐶𝐼𝑃𝐴 of the IPA can be compared to
that of the uniform power/rate allocation, whose capacity is,
from (13), 𝐶𝑢 = 𝑚 ln(1 + 𝑔𝑚𝑖𝑛𝛾0), where 𝑔𝑚𝑖𝑛 = min𝑖 𝑔𝑖 is
the minimum stream gain.

Proposition 2. The IPA offers an SNR gain 𝐺𝐼𝑃𝐴 over the
uniform power/rate allocation, defined from 𝐶𝐼𝑃𝐴(𝛾0) =
𝐶𝑢(𝐺𝐼𝑃𝐴𝛾0), as follows:

1 ≤ 𝐺𝐼𝑃𝐴 =
𝑔

𝑔𝑚𝑖𝑛
≤ 𝑚 (17)

The lower bound is tight when all stream gains are about the
same, and the upper bound is tight when one stream gain is
significantly smaller than the others.

Proof: The equality follows from the comparison of
𝐶𝐼𝑃𝐴 and 𝐶𝑢 and using the definition of 𝐺𝐼𝑃𝐴. The inequal-
ities follow from the fact that 𝑔𝑚𝑖𝑛 ≤ 𝑔 ≤ 𝑚𝑔𝑚𝑖𝑛.

It follows from Proposition 2 that the IPA does not provide
any diversity gain over the uniform allocation, just an SNR
gain.

One may also consider a problem dual to that in (14),

min
𝜶

∑
𝑖

𝛼𝑖, s.t. 𝐶(𝜶) = 𝐶0, 𝛼𝑖 ≥ 0 (18)

i.e. minimizing the total power subject to the system capacity
𝐶(𝜶) being equal to a target value 𝐶0. This problem has the
same solution as that in Theorem 2.

Theorem 3. The problem in (18) has the same solution as
that in Theorem 2 under the condition 𝐶0 = 𝐶𝐼𝑃𝐴, where
𝐶𝐼𝑃𝐴 is the optimum capacity in Theorem 2, i.e. the power
allocation in (16) also minimizes the total power needed to
achieve the system capacity 𝐶𝐼𝑃𝐴.

Proof: A standard proof is to solve (18) via the Lagrange
multiplier technique similar to that in Appendix. We give
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below a simpler contradiction-type proof that provides an
insight as to why this duality holds. Let 𝜶∗ and 𝜶′ be the
optimal power allocations in (14) and (18) when 𝐶0 = 𝐶𝐼𝑃𝐴.
It follows that

∑
𝑖 𝛼

′
𝑖 ≤ ∑

𝑖 𝛼
∗
𝑖 (since 𝜶′ minimizes the

total power). Assume that
∑

𝑖 𝛼
′
𝑖 <

∑
𝑖 𝛼

∗
𝑖 = 𝑚 and define

𝛼′′
𝑖 = 𝑚𝛼′

𝑖/
∑

𝑖 𝛼
′
𝑖 > 𝛼′

𝑖, so that
∑

𝑖 𝛼
′′
𝑖 = 𝑚. Since 𝐶(𝜶)

is an increasing function, 𝐶(𝜶′′) > 𝐶(𝜶′) = 𝐶𝐼𝑃𝐴, which
is impossible since 𝐶𝐼𝑃𝐴 is the largest system capacity.
Therefore,

∑
𝑖 𝛼

′
𝑖 =

∑
𝑖 𝛼

∗
𝑖 = 𝑚. Since 𝐶(𝜶) is strictly

concave, the problem in (14) has a unique solution, so that
𝛼′
𝑖 = 𝛼∗

𝑖 .
Finally, we remark that Theorems 2 and 3, Corollary 3

and Proposition 2 also apply to any multi-stream transmission
system with independent streams and not only to ZF V-BLAST
(e.g. spatial multiplexing over the channel eigenmodes, OFDM
etc.), since we have not used any V-BLAST specifics except
for stream independence.

VI. JOINT INSTANTANEOUS POWER/RATE ALLOCATION

(IPRA)

In this section, we study the joint optimum allocation of
instantaneous power and rate. The key observation here is
that, contrary to what one would expect [11], the conventional
waterfilling algorithm (WF) does not provide an optimal
solution to (5). Indeed, an implicit assumption behind the
conventional WF is that the channel gains do not depend on
the allocated power. This is not so for the V-BLAST because
the SIC forces the equivalent channel gains 𝑔𝑖 = ∣h𝑖⊥∣2 to
depend on the allocated powers, albeit in a binary way: if
some transmitters are not active (𝛼𝑖 = 0), there is no need to
project out interference from those streams. Thus, turning off
𝑖−th stream affects the gains of lower-level streams 𝑔1...𝑔𝑖−1.
This results in (5) being a non-convex problem for the V-
BLAST, for which the conventional WF is in general not a
solution. However, the problem can be split into 2𝑚−1 convex
sub-problems, one per each set of inactive transmitters, and
each of the sub-problems can be solved via the conventional
WF algorithm. The following theorem makes this idea precise.

Theorem 4 (FWF). The joint optimum allocation of instan-
taneous power/rate for the coded V-BLAST (i.e. (5)) is given
by the Fractional Waterfilling Algorithm (FWF) below:

∙ A. Split the problem: for 𝑙 = 1, ..., 2𝑚−1

Select a set of participating transmitters: if 𝑖-th bit in 𝑚-
digit binary representation of 2𝑙 − 1 (𝑙 is an index of the
set) is 𝑙(𝑖) = 1, then transmitter 𝑖 participates in 𝑙-th set (1st
transmitter always participates).

Calculate the per-stream gains with interference from yet-
to-be-detected symbols projected out, 𝑔𝑙𝑖 = ∣h𝑙

𝑖⊥∣2, h𝑙
𝑖⊥ ⊥{

h𝑖+1𝑙
(𝑖+1), . . . ,h𝑚𝑙

(𝑚)
}
, for 𝑖 = 1, . . . ,𝑚.

∙ B. Do the WF on the set of participating transmitters:

Calculate the power allocation:

𝛼𝑙
𝑖 = 𝑙(𝑖)(𝜈𝑙 − 1/(𝛾0𝑔

𝑙
𝑖))+, (19)

where 𝑥+ = 𝑥 if 𝑥 > 0 and 0 otherwise, and the water level
𝜈𝑙 is found from the total power constraint

∑𝑚
𝑖=1 𝛼

𝑙
𝑖 = 𝑚. The

per-stream and total capacities are:

𝐶𝑙
𝑖 = ln

(
1 + 𝛾0𝛼

𝑙
𝑖𝑔

𝑙
𝑖

)
, 𝐶𝑙 =

𝑚∑
𝑖=1

𝐶𝑙
𝑖 .

∙ C. Finalize: End for (𝑙)

The optimum power and rate allocations are given by 𝛼𝑙★

𝑖

and 𝐶𝑙★

𝑖 , where 𝑙★ = argmax𝑙 𝐶
𝑙.

Proof: The optimization problem of simultaneous
power and rate allocation is formally stated as 𝜶★ =
argmax𝜶∈𝑆 𝐶(𝜶), where 𝑆 = {𝜶 : 𝛼𝑖 ≥ 0,

∑
𝛼𝑖 ≤ 𝑚}, the

system capacity 𝐶(𝜶) is

𝐶(𝜶) =

𝑚∑
𝑖=1

𝐶𝑖(𝜶) =

𝑚∑
𝑖=1

ln(1 + 𝑔𝑖𝛼𝑖𝛾0), (20)

where 𝑔𝑖 = ∣h𝑖⊥∣2, and the per-stream rates are set equal to
𝐶𝑖. Step A of the algorithm divides the entire feasible set
𝑆 into disjoint subsets corresponding to different patterns of
participating transmitters: 𝑆 =

∪2𝑚−1

𝑙=1 𝑆𝑙, where 𝑙 determines
which transmitters 2, . . . ,𝑚 are participating 5. It follows that

𝐶★ = max
𝜶∈𝑆

𝐶(𝜶) = max
𝜶∈∪2𝑚−1

𝑙=1 𝑆𝑙

𝐶(𝜶)

= max
𝑙

max
𝜶∈𝑆𝑙

𝐶(𝜶) = max
𝑙
𝐶𝑙,

where 𝐶𝑙 = max𝜶∈𝑆𝑙
𝐶(𝜶) has a unique solution via the

conventional WF algorithm6 applied to the participating set
𝑆𝑙. This is done in Step B. Step C is obvious.

Similarly to the IPA (see Theorem 3), the IPRA via the
FWF also minimizes the total power required to achieve the
target system capacity 𝐶∗. While the FWF is more complex
than the conventional WF, its incremental complexity is low
for small 𝑚. The following corollary shows that the FWF is
close to the conventional WF at high SNR for a given channel
realization.

Corollary 4. For a given realization of a full rank channel, the
fractional waterfilling algorithm converges to the conventional
WF at high SNR, when both produce the uniform power
allocation, 𝛼★

𝑖 → 1 when 𝛾0 → ∞. For rank-deficient
channels, both algorithms allocate no power to zero-gain
dimensions and the same power to all active streams.

Proof: From (19), lim𝛾0→∞ 𝛼𝑙
𝑖 = 𝜈𝑙 and lim𝛾0→∞ 𝜈𝑙 =

𝑚∑
𝑖 𝑙

(𝑖) . Let 𝐶(𝑝) = max𝑙:
∑

𝑖 𝑙
(𝑖)=𝑝 𝐶

𝑙, i.e. 𝐶(𝑝) is the maxi-
mum capacity attained with 𝑝 participating transmitters. Let
𝑔
(𝑝)
𝑖 be the channel gains corresponding to 𝐶(𝑝) (set 𝑔(𝑝)𝑖 = 0

if the corresponding transmitter does not participates; all
other 𝑔(𝑝)𝑖 ’s are strictly positive as follows from the full rank
condition), and let 𝜈(𝑝) be the corresponding water level.

5"participating" in the sense that they are not turned off at this step and
thus affect the projection operation. They may be assigned zero power later on
by the WF algorithm at step B, which however will not affect the projection
operation. 1st transmitter always participates since it does not affect the gains
of any other stream.

6"Conventional" in a sense that ℎ𝑖⊥ are calculated only once taking into
account all transmitters in the set 𝑆𝑙 and the waterfilling is also done over
this set. If some transmitters are assigned zero power by the WF algorithm,
this does not lead to recalculation of ℎ𝑖⊥.
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Compare 𝐶(𝑝) and 𝐶(𝑝+1) as 𝛾0 → ∞:

𝐶(𝑝+1) − 𝐶(𝑝) = ln

⎛
⎝
∏𝑚

𝑖=1

(
1 + 𝜈(𝑝+1)𝛾0𝑔

(𝑝+1)
𝑖

)
∏𝑚

𝑖=1

(
1 + 𝜈(𝑝)𝛾0𝑔

(𝑝)
𝑖

)
⎞
⎠

→ ln

⎛
⎝𝛾0 𝜈

𝑝+1
(𝑝+1)

∏
𝑖:𝑔

(𝑝+1)
𝑖 >0

𝑔
(𝑝+1)
𝑖

𝜈𝑝(𝑝)
∏

𝑖:𝑔
(𝑝)
𝑖 >0

𝑔
(𝑝)
𝑖

⎞
⎠ > 0,

so that 𝐶𝑚 > 𝐶𝑚−1 > . . . > 𝐶1, and therefore the fully
dimensional system (𝐶𝑚) is optimal when 𝛾0 → ∞.

Note that Corollary 4 does not imply that the respective
outage probabilities converge to each other as 𝛾0 → ∞.
Indeed, as Corollary 9 demonstrates, they are very much dif-
ferent7. Unlike the average power and rate allocation (APRA)
in [1], where the uniform power allocation is optimum when
combined with the average rate allocation, the IPRA allocates
power in a non-uniform way (except in some special cases).
The following corollaries further characterize the FWF in
Theorem 4.

Corollary 5. If the allocation given by the FWF has all
streams active (no 𝛼𝑖 = 0), it is the same as the allocation
given by the conventional WF.

Corollary 6. If the conventional WF allocation has some
inactive streams, the FWF one also has inactive stream(s) (not
necessarily the same ones), but the converse is not necessarily
true.

Following Theorem 1, the FWF algorithm not only max-
imizes the instantaneous capacity 𝐶 but also minimizes the
system outage probability 𝑃𝑜𝑢𝑡.

VII. PERFORMANCE ANALYSIS

In this section, we present a comparative performance
analysis of the unoptimized and optimized systems in different
operating regimes.

A. Any SNR, any rate

Proposition 3. For any channel realization, the system capac-
ities of the coded V-BLAST with the FWF, the WF, the IRA,
the IPA and the uniform power/rate allocation are bounded
as follows:

ln (1 +𝑚𝛾0𝑔𝑚𝑎𝑥) ≤𝐶𝐹𝑊𝐹 ≤ 𝑚 ln (1 + 𝛾0𝑔𝑚𝑎𝑥) (21)

ln (1 +𝑚𝛾0𝑔𝑚𝑎𝑥⊥) ≤𝐶𝑊𝐹 ≤ 𝑚 ln (1 + 𝛾0𝑔𝑚𝑎𝑥⊥) (22)

ln (1 + 𝛾0𝑔𝑚𝑎𝑥⊥) ≤𝐶𝐼𝑅𝐴 ≤ 𝑚 ln (1 + 𝛾0𝑔𝑚𝑎𝑥⊥) (23)

𝐶𝑢 ≤𝐶𝐼𝑃𝐴 ≤ 𝐶𝑢(𝑚𝛾0) (24)

𝐶𝑢 = 𝑚 ln
(
1 + 𝛾0 min

𝑖
∣h𝑖⊥∣2

)
(25)

where 𝑔𝑚𝑎𝑥 = max𝑖 ∣h𝑖∣2, 𝑔𝑚𝑎𝑥⊥ = max𝑖 ∣h𝑖⊥∣2 are the
maximum unprojected and projected stream gains. The bounds
are tight (i.e. there are channel realizations that achieve
them). The relationship 𝐶𝑢 ≤ 𝐶𝐼𝑅𝐴 ≤ 𝐶𝑊𝐹 ≤ 𝐶𝐹𝑊𝐹

always holds. Moreover, 𝐶𝑢 = 𝐶𝐼𝑅𝐴 = 𝐶𝑊𝐹 = 𝐶𝐹𝑊𝐹 =

7This happens because, for any finite SNR, there are always bad channel
realizations for which the WF and the FWF power/rate allocations are
different, and it is these bad realizations that dominate the outage performance.

𝑚 ln
(
1 + 𝛾0∣h1∣2

)
if and only if H+H = ∣h1∣2I, where

I is the identity matrix, i.e the channel is orthogonal. No
optimization is required in this case.

Proof: The left expression in (21) is the capacity in the
regime with only one active transmitter, 𝛼𝑖𝑚𝑎𝑥 = 𝑚, where
𝑖𝑚𝑎𝑥 = argmax𝑖 ∣h𝑖∣2 (𝑔𝑖𝑚𝑎𝑥 = ∣h𝑖𝑚𝑎𝑥 ∣2 as there is no
interference to project out when only one stream is active).
Since the optimal capacity cannot be smaller, the lower bound
in (21) holds. The upper bound in (21) is obtained as follows
:

𝐶𝐹𝑊𝐹 =
∑
𝑖

ln
(
1 + 𝛼★

𝑖 𝛾0∣h𝑖⊥∣2
)

≤
∑
𝑖

ln
(
1 + 𝛼★

𝑖 𝛾0 max
𝑖

∣h𝑖∣2
)

≤ 𝑚 ln
(
1 + 𝛾0 max

𝑖
∣h𝑖∣2

)
where 𝜶★ is the optimum power allocation for 𝑔𝑖 = ∣h𝑖⊥∣2.
The first inequality is due to the fact that ∣h𝑖⊥∣2 ≤ max𝑖 ∣h𝑖∣2.
To obtain the second inequality, consider a fictitious MIMO
channel with orthogonal subchannels of equal gains such that
∣h𝑖⊥∣2 = max𝑖 ∣h𝑖∣2. As seen from (19), the optimal FWF
solution for such channel is the uniform power allocation and
𝜶★ is sub-optimal in general in this channel, which yields the
upper bound in (21). The bounds for conventional waterfilling
(22) follow from the same reasoning. The difference between
the two stems from the fact that the WF is oblivious to the
possibility that some transmitters may be inactive and hence do
not require projecting out their subspace, so that the maximum
possible gain for the WF is max𝑖 ∣h𝑖⊥∣2. The lower bound for
IRA capacity in (23) is the largest term in the sum 𝐶𝐼𝑅𝐴 =∑

𝑖 ln
(
1 + 𝛾0∣h𝑖⊥∣2

)
. The upper bound is obtained by upper

bounding each term of the sum. For the regular V-BLAST
(uniform power/rate allocation), the weakest stream dominates
the performance so that (25) follows from (13). (24) follows
from (17).

One can also envision an iterative water-filling (IWF) al-
gorithm, where the per-stream gains are re-computed every
time one stream is assigned 0 power (to eliminate orthogonal
projection over respective h𝑖; this may require several itera-
tions, at most 𝑚− 1, to converge). It is straightforward to see
that its system capacity is between those of the WF and FWF,
𝐶𝑊𝐹 ≤ 𝐶𝐼𝑊𝐹 ≤ 𝐶𝐹𝑊𝐹 .

Comparing the system capacities of the FWF applied to
the unordered ZF V-BLAST and of the WF applied to the
optimally-ordered ZF V-BLAST, we observe that the former is
in general sub-optimal. However, its computational complexity
is also much smaller: while the optimally-ordered WF V-
BLAST requires 𝑚! WF runs, the FWF requires only 2𝑚−1

(< 𝑚! for 𝑚 > 2) WF runs, most of which are sparse (i.e.
many streams are inactive). Furthermore, these two capacities
coincide in the low SNR regime, as follows from (39) and
(40). The same can be demonstrated, with some effort, for the
high SNR regime.

Let us consider the cases when some optimization strategies
offer no advantage.

Corollary 7. The following holds:
∙ 𝐶𝑢 = 𝐶𝐼𝑃𝐴 = 𝐶𝐼𝑅𝐴 = 𝐶𝑊𝐹 if and only if ∣h1⊥∣2 = . . . =
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∣h𝑚⊥∣2.
∙ 𝐶𝑢 = 𝐶𝑊𝐹 if 𝐶𝑢 = 𝐶𝐼𝑅𝐴 or 𝐶𝑢 = 𝐶𝐼𝑃𝐴, i.e. if there is
no advantage in the IRA or IPA (compared to the unoptimized
system), there is no advantage in the WF either, only the FWF
may bring an improvement.

Proposition 4. The outage probabilities of the FWF, the WF,
the IRA, the IPA and the uniform power/rate allocation are
ordered in an arbitrary-fading channel as follows:

𝑃𝐹𝑊𝐹
𝑜𝑢𝑡 ≤ 𝑃𝑊𝐹

𝑜𝑢𝑡 ≤ 𝑃 𝐼𝑅𝐴
𝑜𝑢𝑡 ≤ 𝑃𝑢

𝑜𝑢𝑡 (26)

𝑃𝑢
𝑜𝑢𝑡(𝑚𝛾0) ≤ 𝑃 𝐼𝑃𝐴

𝑜𝑢𝑡 ≤ 𝑃𝑢
𝑜𝑢𝑡 (27)

with the equalities if 𝑚 = 1. In the i.i.d. Rayleigh-fading
channel, the equalities are achieved only if 𝑚 = 1.

Proof: Each inequality in (26) follows from the fact that
its left-hand side corresponds to optimization over a feasible
set that is larger compared to that of its right-hand side. (27)
follows from (17). If 𝑚 = 1, there is nothing to optimize -
hence, the equality. The "only if" part follows from the fact
that a Gaussian density is strictly positive for any finite value
of its argument so that the difference between outage sets
corresponding to two different optimization strategies has non-
zero measure.

Based on Proposition 3, the outage probabilities can now
be characterized in a more specific way.

Corollary 8. For any 𝑅 and any 𝛾0, the outage probabilities
of the coded V-BLAST with the uniform power/rate allocation,
the IRA, the IPA, the WF and the FWF in the i.i.d. Rayleigh
fading channel are bounded as follows:

𝐹𝑚
𝑛 (𝑧) ≤ 𝑃𝐹𝑊𝐹

𝑜𝑢𝑡 ≤ 𝐹𝑚
𝑛 (𝑧𝑚/𝑚) (28)

𝑚∏
𝑖=1

𝐹𝑛−𝑚+𝑖 (𝑧) ≤ 𝑃𝑊𝐹
𝑜𝑢𝑡 ≤

𝑚∏
𝑖=1

𝐹𝑛−𝑚+𝑖 (𝑧𝑚/𝑚) (29)

𝑚∏
𝑖=1

𝐹𝑛−𝑚+𝑖 (𝑧) ≤ 𝑃 𝐼𝑅𝐴
𝑜𝑢𝑡 ≤

𝑚∏
𝑖=1

𝐹𝑛−𝑚+𝑖 (𝑧𝑚) (30)

𝑃𝑢
𝑜𝑢𝑡 = 1−

𝑚∏
𝑖=1

(1− 𝐹𝑛−𝑚+𝑖 (𝑧)) (31)

where 𝑧 = (𝑒𝑅 − 1)/𝛾0, 𝑧𝑚 = (𝑒𝑚𝑅 − 1)/𝛾0, 𝐹𝑘(𝑥) = 1 −
𝑒−𝑥

∑𝑘−1
𝑙=0 𝑥

𝑙/𝑙! is the outage probability of 𝑘-th order MRC.
Proof: Observe that ∣h𝑖∣2 ∼ 𝜒2

2𝑛, all independent of each
other, and ∣h𝑖⊥∣2 ∼ 𝜒2

2(𝑛−𝑚+𝑖), and also independent of each
other [12]. For 𝑋 ∼ 𝜒2

2𝑘, we have Pr {𝑋 < 𝑥} = 𝐹𝑘 (𝑥).
Using these facts, the bounds of Corollary 8 follow from the
bounds of Proposition 3.

B. Low outage probability regime

The diversity gains can now be characterized in the low-
outage regime based on Corollary 8. The diversity gain can
be found from [8]

𝑑 = − lim
𝛾0→∞

ln𝑃𝑜𝑢𝑡

ln 𝛾0
. (32)

or by inspection when a closed-form low-outage approxima-
tion of 𝑃𝑜𝑢𝑡 is available.

Corollary 9. For fixed 𝑅, the diversity gains of the unopti-
mized V-BLAST, the IRA, the IPA, the WF and the FWF are
related as follows:

𝑑𝑢 = 𝑛−𝑚+ 1 = 𝑑𝐼𝑃𝐴

≤ 𝑑𝑊𝐹 = 𝑑𝐼𝑅𝐴 =

𝑚∑
𝑖=1

(𝑛−𝑚+ 𝑖) ≤ 𝑑𝐹𝑊𝐹 = 𝑛𝑚

The equality is achieved for 𝑚 = 1 only, i.e. only the FWF
achieves the full MIMO channel diversity 𝑛𝑚 for 𝑚 > 1. 8

Proof: Using the well-known approximation 𝐹𝑘(𝑥) =
𝑥𝑘/𝑘! + 𝑜(𝑥𝑘), 𝑥 → 0, in the upper and lower bounds to
𝑃𝑜𝑢𝑡 in each equation of Corollary 8 and substituting it into
(32), one observes that the lower and upper bounds give the
same diversity gain, which is therefore the diversity gain.

The instantaneous rate allocation is the most efficient of
all the techniques in terms of incremental improvement as it
brings significant diversity gain and keeps the rate close to the
capacity. When 𝑚 > 1, the full MIMO channel diversity is
achieved by the FWF only.

C. Any SNR, low rate (wideband) regime

The 𝑅 ≪ 1 regime here is also known as the wideband
regime [13][14] (since 𝑅 is in [nat/s/Hz], i.e. the rate per unit
bandwidth), which is a popular solution for many systems (e.g.
CDMA).

Theorem 5. For any 𝛾0 and low rate 𝑅 ≪ 1, the outage prob-
abilities of the coded V-BLAST with the uniform power/rate
allocation, the IRA, the WF and the FWF in the i.i.d. Rayleigh
fading channel are given by9

𝑃𝑢
𝑜𝑢𝑡 = 1−

𝑚∏
𝑖=1

(1− 𝐹𝑛−𝑚+𝑖 (𝑥)) ≈ 𝑥𝑛−𝑚+1

(𝑛−𝑚+ 1)!
, (33)

𝑃 𝐼𝑅𝐴
𝑜𝑢𝑡 ≈ 𝐹𝑑𝐼𝑅𝐴 (𝑚𝑥) ≈ 1

𝑑𝐼𝑅𝐴!
(𝑚𝑥)𝑑𝐼𝑅𝐴 , (34)

𝑃𝑊𝐹
𝑜𝑢𝑡 ≈

𝑚∏
𝑖=1

𝐹𝑛−𝑚+𝑖 (𝑥) ≈ 𝑥𝑑𝐼𝑅𝐴∏𝑚
𝑖=1(𝑛−𝑚+ 𝑖)!

(35)

𝑃𝐹𝑊𝐹
𝑜𝑢𝑡 ≈ 𝐹𝑚

𝑛 (𝑥) ≈ 𝑥𝑛𝑚

(𝑛!)𝑚
(36)

where the second approximation in each case holds at the low
outage regime, 𝑥 = 𝑅/𝛾0 ≪ 1.

Proof: 1st equality in (36) and (35) follows immediately
from Corollary 8 by applying the low rate approximation
𝑒𝑚𝑅−1 ≈ 𝑚𝑅 and observing that the lower and upper bounds
coincide. To show 1st equality in (34), notice that

𝑃 𝐼𝑅𝐴
𝑜𝑢𝑡 = Pr

{∑
𝑖

ln
(
1 + 𝛾0∣h𝑖⊥∣2

)
< 𝑚𝑅

}

(𝑎)≈ Pr

{
𝛾0
∑
𝑖

∣h𝑖⊥∣2 < 𝑚𝑅

}
(𝑏)
= 𝐹𝑑𝐼𝑅𝐴

(
𝑚𝑅

𝛾0

)

8This conclusion is not in contradiction to Corollary 9 of [18] since the
latter (as well as Theorem 7 in [18]) requires all streams to be active, which
is not the case for fixed 𝑅 and 𝛾0 → ∞.

9to the best of our knowledge, it is the first time when the outage probability
of the waterfilling algorithm is found in an explicit, closed form.
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where (a) follows from ln(1 + 𝑥) ≈ 𝑥 when 𝑥 ≪ 1, so
that ln(1 + 𝛾0∣h𝑖⊥∣2) ≈ 𝛾0∣h𝑖⊥∣2 under an outage event
𝐶𝐼𝑅𝐴 < 𝑚𝑅 ≪ 1; (b) follows from the fact that

∑
𝑖 ∣h𝑖⊥∣2 ∼

𝜒2
2𝑑𝐼𝑅𝐴

. 2nd equality in all cases follows from the standard
approximation of 𝐹𝑘(𝑥) for small 𝑥.

Note that the FWF not only has a higher diversity gain, but
also an SNR gain of

∏𝑚
𝑖=1 𝑛!/(𝑛−𝑚+ 𝑖)! over the WF.

D. Low SNR regime

The next result characterizes the optimization strategies at
the low SNR regime. We emphasize that low SNR does not
imply high error rate in coded systems, unlike uncoded ones.
For example, the outage probability of the coded system is
small at low SNR as long as 𝑅/𝛾0 ≪ 1. Many practical
systems (e.g. CDMA) operate in this regime [8].

Theorem 6. In the low SNR regime, 𝑚𝛾0 max𝑖 ∣h𝑖∣2 ≪ 1,
the instantaneous capacities of the regular (unoptimized) V-
BLAST and of the IRA, the WF, and the FWF are given by

𝐶𝑢 ≈ 𝑚𝛾0 min
𝑖

∣h𝑖⊥∣2 (37)

𝐶𝐼𝑅𝐴 ≈ 𝛾0

𝑚∑
𝑖=1

∣h𝑖⊥∣2 (38)

𝐶𝑊𝐹 ≈ 𝑚𝛾0 max
𝑖

∣h𝑖⊥∣2 (39)

𝐶𝐹𝑊𝐹 ≈ 𝑚𝛾0 max
𝑖

∣h𝑖∣2 (40)

and these capacities are attained by the following power/rate
allocations:

∙ (38) is attained by 𝑅𝐼𝑅𝐴
𝑖 = 𝛾0∣h𝑖⊥∣2,

∙ (39) is attained by 𝛼𝑊𝐹
𝑖𝑚𝑎𝑥

= 𝑚, 𝑅𝑊𝐹
𝑖𝑚𝑎𝑥

= 𝑚𝛾0∣h𝑖𝑚𝑎𝑥⊥∣2,
and 0 otherwise, where 𝑖𝑚𝑎𝑥 = argmax𝑖 ∣h𝑖⊥∣2 is the
strongest projected channel,

∙ (40) is attained by 𝛼𝐹𝑊𝐹
𝑖𝑚𝑎𝑥

= 𝑚, 𝑅𝐹𝑊𝐹
𝑖𝑚𝑎𝑥

= 𝑚𝛾0∣h𝑖𝑚𝑎𝑥 ∣2
and 0 otherwise, where 𝑖𝑚𝑎𝑥 = argmax𝑖 ∣h𝑖∣2 is the
strongest unprojected channel.

Proof: In the capacity expressions of Proposition 3, apply
the approximation ln (1 + 𝑥) ≈ 𝑥, which is valid for 𝑥 < 1,
and observe that the lower and upper bounds coincide.

As a side remark, note that the outage probabilities in
Theorem 5 are the same as those obtained based on the
right hand sides of (37)-(40). Additionally, it follows from
Theorem 6 that the FWF significantly outperforms the WF,
𝐶𝑊𝐹 ≪ 𝐶𝐹𝑊𝐹 , when max𝑖 ∣h𝑖⊥∣ ≪ max𝑖 ∣h𝑖∣ and their
performance is close otherwise.

Based on Theorem 6, the following holds.

Corollary 10. In the low SNR regime, the WF and FWF are
related as follows: 𝐶𝑊𝐹 = 𝐶𝐹𝑊𝐹 if and only if 𝑖𝑚𝑎𝑥 =
argmax𝑖 ∣h𝑖⊥∣2 = 𝑚 or h𝑖𝑚𝑎𝑥 ⊥ {h𝑖𝑚𝑎𝑥+1, . . . ,h𝑚}.

One may further consider the optimally-ordered WF and
FWF (OWF and OFWF). Based on (40) and (39), the fol-
lowing relationship holds in the low-SNR regime: 𝐶𝑂𝐹𝑊𝐹 =
𝐶𝐹𝑊𝐹 = 𝐶𝑂𝑊𝐹 ≥ 𝐶𝑊𝐹 , i.e. the ordering does not improve
the FWF, but does improve the WF making it equal to the
FWF.

VIII. EXAMPLES

To obtain some additional insights and to validate the
analytical results above, we consider here 2x2 V-BLAST
in the i.i.d. Rayleigh fading channel under the optimization
strategies discussed above. Outage probabilities of the V-
BLAST with these optimization strategies obtained by Monte-
Carlo simulations and the approximations above are shown in
Fig. 2. As follows from the analysis, both the IRA and the
FWF provide a significant improvement over the unoptimized
system. As per Corollary 9, the conventional WF fails to
achieve the minimum outage probability for a given total rate
and to provide any diversity gain over the IRA (both have the
diversity gain of 3), while the FWF achieves the full MIMO
diversity of 4, outperforming both the IRA and the WF by
a wide margin (about 3-5 dB at 𝑃𝑜𝑢𝑡 = 10−3). Note also a
significant advantage of the instantaneous optimization over
the average one: while the average power and rate allocation
achieves the outage probability ≈ 10−2 at 𝛾0 = 20 dB in Fig.
2(a), the FWF achieves the outage probability ≈ 10−5 at the
same SNR. The instantaneous optimization is also significantly
superior to the average one in the low-rate low-SNR regime,
as Fig. 2(b) shows, so that more feedback required for the
former pays off well: the FWF brings the outage probability
down to ≈ 10−6 from ≈ 10−1 for the unoptimized system at
SNR = 0 dB. Note also that, for this system, the FWF requires
only one extra run with only one stream active compared to
the WF, i.e. very small incremental complexity. Apart from
simulations, Fig. 2(b) also shows the low-rate approximations
in Theorem 5, which are remarkably accurate in this regime.

To illustrate Corollaries 4, 7 and 10, and Theorem 6, Fig.
3 shows the instantaneous capacity for two typical channel
realizations: a ’good’ channel (a) with almost orthogonal
subchannels, ∣h1⊥∣ = ∣h2∣ ≈ ∣h1∣, and a ’bad’ channel
(b) with almost parallel subchannels, ∣h1⊥∣ = ∣h2∣ ≪ ∣h1∣.
The per-stream gains in the ZF V-BLAST are the same in
these two cases, 𝑔1 = 𝑔2 = 1, so that the WF allocates the
same powers and rates to the two streams, 𝛼1 = 𝛼2 = 1,
𝑅1 = 𝑅2 = 𝑅, and is identical to the IRA, the IPA and the
unoptimized system, 𝐶𝑊𝐹 = 𝐶𝐼𝑅𝐴 = 𝐶𝐼𝑃𝐴 = 𝐶𝑢, over the
entire SNR range in both cases. This behavior agrees with the
statement of Corollary 7, which says that if the IRA or IPA
fails to provide any improvement over the unoptimized system
then so does the WF. As predicted by Corollary 4, the FWF
coincides with the WF at high SNR. In contrast, the FWF is
the only strategy to yield a performance gain at low SNR:
𝐶𝐹𝑊𝐹 ≈ 2𝐶𝑊𝐹 for the ’good’ case in Fig. 3(a), i.e. slightly
better than the conventional WF, and 𝐶𝐹𝑊𝐹 ≈ 100𝐶𝑊𝐹 for
the ’bad’ one in Fig. 3(b), i.e. a significant advantage when
∣h1⊥∣ = ∣h2∣ ≪ ∣h1∣. The 100-fold gain of the FWF over
the conventional WF (and, of course, over the unoptimized
system) in the ’bad’ channel is particularly advantageous for
static or quasi-static channels (very slow fading), when a user
might experience a ’bad’ channel realization for a very long
period of time.

IX. CONCLUSION

Instantaneous power, rate and joint power-rate allocations
for the coded V-BLAST have been studied. Since the conven-
tional waterfilling algorithm fails to maximize the capacity
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Fig. 2. Outage probability vs. average SNR for the average (Av.) and
instantaneous (Inst.) optimization strategies for 2 × 2 V-BLAST in i.i.d.
Rayleigh fading channel for (a) high rate 𝑅 = 3 [nat/s/Hz] (simulations),
and (b) low rate 𝑅 = 0.1 [nat/s/Hz] (simulations (symbols) and the
approximations in Theorem 5 (lines) ). APA, ARA and APRA are the average
power, rate and power/rate allocations from [1].

of the coded ZF V-BLAST, the fractional waterfilling algo-
rithm has been proposed, which implements joint power and
rate allocation that simultaneously maximizes instantaneous
system capacity and minimizes the outage probability. Unlike
the average optimization strategies and the IPA, the IRA and
IPRA provide a diversity gain over the unoptimized system.
The fractional waterfilling algorithm significantly outperforms
the other strategies. As established by both the analysis and
simulations, the FWF algorithm achieves the full MIMO
diversity, while the IRA, IPA and the WF do not. A number of
closed-form bounds and accurate approximations to the outage
performance of these algorithms have been given. Many of
these results also apply to generic multi-stream transmis-
sion systems (spatial multiplexing over channel eigenmodes,
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Fig. 3. Instantaneous system capacity of 2×2 V-BLAST with the FWF and
the conventional WF for two specific channel realizations; (a) - ’good", (b)
- "bad". While the FWF exhibits only a small performance improvement for
the "good" realization (a): h1 = [1 1]𝑇 , h2 = [0 1]𝑇 , its superiority for
"bad" realization (b): h1 = [1 10]𝑇 , h2 = [0 1]𝑇 , is significant, especially
at the low-SNR regime. Note that 𝐶𝐼𝑅𝐴 = 𝐶𝐼𝑃𝐴 = 𝐶𝑊𝐹 = 𝐶𝑢 in these
examples, so that only the FWF provides an improvement.

OFDM) or the systems relying on successive interference
cancelation (multi-user detection, channel equalization).

X. APPENDIX

The problem in (14) is equivalent to the following:

max
𝜶,𝑅

𝑅, s.t. 𝑅 ≤ ln(1 + 𝛼𝑖𝑔𝑖𝛾0),
∑
𝑖

𝛼𝑖 = 𝑚,𝛼𝑖 ≥ 0 (41)

which is clearly a convex problem and for which the La-
grangian is

𝐿 = 𝑅−
∑
𝑖

𝜆𝑖(𝑅− ln(1 + 𝛼𝑖𝑔𝑖𝛾0)) (42)

− 𝜈

(∑
𝑖

𝛼𝑖 −𝑚

)
+
∑
𝑖

𝛽𝑖𝛼𝑖

where 𝜆𝑖, 𝛽𝑖, 𝜈 are Lagrange multipliers. The corresponding
KKT conditions (see e.g. [15]) are

∂𝐿

∂𝑅
= 1−

∑
𝑖

𝜆𝑖 = 0 (43)

∂𝐿

∂𝛼𝑖
=

𝜆𝑖𝑔𝑖𝛾0
1 + 𝛼𝑖𝑔𝑖𝛾0

− 𝜈 + 𝛽𝑖 = 0 (44)

𝛼𝑖, 𝛽𝑖, 𝜆𝑖 ≥ 0, 𝑅 ≤ ln(1 + 𝛼𝑖𝑔𝑖𝛾0),
∑
𝑖

𝛼𝑖 = 𝑚, (45)

𝛽𝑖𝛼𝑖 = 0, 𝜆𝑖(𝑅− ln(1 + 𝛼𝑖𝑔𝑖𝛾0)) = 0 (46)
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Using these conditions and observing that 𝛼𝑖 > 0 ∀𝑖 (other-
wise 𝑅 = 0), one obtains, after some manipulations,

𝛼𝑖 =
𝑒𝑅 − 1

𝑔𝑖
=

𝑚

𝑔𝑖
∑

𝑖 𝑔
−1
𝑖

=
𝑔

𝑔𝑖
(47)

from which 𝑅 = ln(1 + 𝑔𝛾0) follows.
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