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ABSTRACT

The aim of compressed sensing is to recover attributes of

sparse signals using very few measurements. Given an overall

bit budget for quantization, this paper demonstrates that there

is value to redundant measurement. The measurement ma-

trices considered here are required to have the property that

signal recovery is still possible even after dropping certain

subsets of D measurements. It introduces the concept of a

measurement matrix that is weakly democratic in the sense

that the amount of information about the signal carried by

each of the designated D-subsets is the same. Examples of

deterministic measurement matrices that are weakly demo-

cratic are constructed by exponentiating codewords from the

binary second order Reed Muller code. The value in reject-

ing D measurements that are on average larger, is to be able

to provide a finer grid for vector quantization of the remain-

ing measurements, even after discounting the original budget

by the bits used to identify the reject set. Simulation results

demonstrate that redundancy improves recovery SNR, some-

times by a wide margin. Optimum performance occurs when

a significant fraction of measurements are rejected.

Index Terms— Compressed sensing, quantization, democ-

racy, saturation

1. INTRODUCTION

Democracy is the principle that the individual bits in a

coarsely quantized representation of a signal are all given

equal weight in the signal approximation. It is a mathemat-

ical property characteristic of certain sigma-delta converters

[1] but not of standard binary or decimal expansions. The

principle was introduced by Calderbank and Daubechies [2]

who proved that democratic representations cannot achieve

the same accuracy as optimal nondemocratic schemes.

In compressed sensing (CS), a signal α ∈ R
C is sam-

pled via the linear measurements y = Φα, where Φ is an
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N × C measurement matrix, and y ∈ R
N is the vector of

samples acquired. Laska et al. [3] formalized the concept of

democratic measurement in the CS framework. The princi-

ple that each of the N measurements be given equal weight is

expressed in the requirement that any N −D measurements

should be sufficient to robustly recover the sparse input signal.

One of the virtues of democracy is that it avoids the situation

where removal of some measurements results in high distor-

tion whereas removal of others has negligible effect. Laska et

al. used the Restricted Isometry Property (RIP) introduced by

Candes and Tao [4] to prove that random Gaussian measure-

ment matrices satisfy this strong notion of democracy.

Laska et al. [3] also investigated how to quantize CS mea-

surements. Their baseline is conventional Shannon-Nyquist

uniform sampling where we would scale down the analog sig-

nal amplitude (and therefore increase the quantization error)

to avoid the gross saturation errors that occur when the signal

amplitude exceeds the dynamic range of the quantizer. Their

proposed recovery algorithm simply rejects all measurements

that fall above the saturation level G of the quantizer. The

optimal saturation level is found through experiment to be

markedly different from zero. In this case, the reduced dis-

tortion on the measurements that are retained outweighs the

loss in fidelity from rejecting measurements that saturate.

The analysis given by Laska et al. [3] can be improved in

several ways. First, we note that that the columns of a ran-

dom measurement matrix may be viewed as points randomly

drawn an N -dimensional Euclidean sphere. Thus, encoding

CS measurements via scalar quantization is suboptimal for

the resulting Gaussian distribution. Additionally, since the

bitrate per measurement remains constant through the rejec-

tion process, the total number of bits used to encode the mea-

surements is dependent on the rejection rate D/N . Finally,

there is no accounting for the number of bits needed to en-

code the indices of the rejected measurements, which is re-

quired to perform signal recovery. Our goal in this paper is to

address these issues and demonstrate significant further im-

provements in CS recovery enabled by democratic measure-

ment matrices.

Our proposed problem setup is as follows. We are given

a bit budget B and an initial set of N measurements, with the

choice to reject D measurements from this set. Our bit budget

is divided between (i) a set of bits to encode the set of indices



for the rejected measurements, and (ii) the remaining bits that

encode the values of the preserved measurements. Similarly

to [3], our objective in rejecting measurements is to be able to

place a finer mesh over the measurements that are retained, so

that recovery from such quantized measurements can be more

accurate. However, as we allow more diversity among the sets

of measurements that can be rejected, we are shifting the role

of more bits from encoding measurement values to encoding

rejected indices, making the quantization mesh coarser. This

tradeoff suggests that we weaken the concept of democracy

by allowing only specific sets of measurements to be available

for rejection.

Random measurement matrices in CS play a role similar

to that of random coding in Shannon theory, in that both pro-

vide worst case guarantees in the context of an adversarial

signal/error model. Random matrices are easy to construct,

and can be proven to satisfy RIP with high probability [5].

However, storing the entries of a random matrix may require

significant space and there is also no algorithm for efficiently

verifying whether a measurement matrix satisfies RIP. Calder-

bank, Howard and Jafarpour [6] considered deterministic ma-

trices and provided easily verifiable criteria that guarantee the

measurement matrix acts like a near isometry on the over-

whelming majority of sparse signals. Probability still plays

a critical role, but it enters the signal model rather than the

construction of the measurement matrix.

While our weaker notion of democracy applies to both

random and deterministic matrices, we focus in this paper

on deterministic constructions for measurement matrices that

are provably democratic. The columns of these matrices may

be viewed as points that are uniformly distributed over the

Euclidean sphere. Similarly to the random matrix case, the

distribution of the resulting CS measurements is essentially

Gaussian and scalar quantization is suboptimal. We therefore

apply vector quantization to the measurements preserved to

further improve the performance of measurement quantiza-

tion and CS signal recovery. We demonstrate experimentally

that measurement rejection achieve significant improvements

on CS recovery performance by rejecting structured subsets

of measurements from democratic matrices. Furthermore, we

show that the additional considerations taken in this paper

make the optimal rejection levels higher than those achieved

by the framework of [3].

This paper is organized as follows. Section 2 describes

our proposed structured rejection algorithm. Section 3 gives

examples of deterministic measurement matrices that are

weakly democratic. Section 4 presents simulation results

showing that our approach outperforms the conventional one

in typical scenarios. Section 5 concludes the paper.

2. STRUCTURED REJECTION ALGORITHM

Identifying the entries of y to be rejected in order to achieve

the optimum performance is a complex problem in itself. The

implementation of the reject-and-quantize idea in the context

of vector quantization meets several challenges.

First, we want to reduce the variance of the surviving

measurements so that they are easier to quantize. One might

choose to reject the largest entries, or the smallest entries, or

some of the very large and some of the very small entries.

Second, rejection changes the number of bits that are avail-

able per measurement. We wish to not only reject entries that

are outside the dynamic range of the quantizer, but also to re-

distribute the bit budget among the surviving measurements.

Third, the overhead entailed in encoding the indices for the

set of rejected measurements might negate the gain in bit rate

due to the bit budget redistribution.

Suppose first that we fix the value of D and reject (sub-

optimally) the D largest magnitude entries of y. The vector ỹ
containing the remaining N −D entries will have, on the av-

erage, smaller norm compared to that of a vector with N −D
entries drawn at random from y. This allows us to reduce

sizes of the individual quantization cells, in turn decreasing

the quantization error. The overhead size to encode the set of

rejected measurements is log2
(

N

D

)

∼ D log2
N

D
bits.

To mitigate the overhead, instead of allowing all measure-

ment subsets of size D to be rejected, we fix a collection of

rejectable subsets of D measurements. The richer the collec-

tion, the more freedom we have as to which measurements

to reject, but also the more overhead to describe the rejected

subset. To explore this tradeoff, we consider several different

collections of rejectable subsets of size D, where we assume

that N = 2m for some positive integer m.

First, we define the collection Ωs for any integer 1 ≤ s ≤
m−1 containing sets of D = 2m−s measurements as follows.

Consider the row numbers from 1 to 2m as the members of a

finite field F
m
2 . The subsets in Ωs correspond to all translates

of all subspaces of F
m
2 of codimension s. Since there are

a total of
∏

s

k=1
[2m−2k−1]

∏
s

k=1
[2s−2k−1]

subspaces of codimension s and a

total of 2s translates, it is easy to check that less than (m −
s+ 2)s bits are required to encode a subset from Ωs.

Next, we define the collection Ω⊥
s ⊂ Ωs that con-

tains subsets of F
m
2 corresponding to translates of a the

subspace spanned by s elements from the generator set

{20, 21, 22, . . . , 2m}. Since there are a total of
(

m

s

)

subsets of

size s and a total of 2s translates, number of bits required to

index subsets from Ω⊥
s is log2 2

s
(

m

s

)

≈ s
(

1 + log2
m

s

)

.

The structured rejection algorithm is summarized below.

• Fix a collection Ω of subsets with D elements.

• Reject the measurements for the subset ω ∈ Ω that fea-

tures the largest norm.

• Quantize the remaining measurements ỹ using a vector

quantizer trained accordingly.

• Pass the quantized representation of ỹ and rejected sub-

set ω to the CS recovery algorithm.



• Remove the rows of the measurement matrix indexed

by ω and recover α using the quantized version of ỹ.

3. DEMOCRATIC MEASUREMENT MATRICES

Given m odd and 0 ≤ r ≤ (m− 1)/2, the Delsarte-Goethals

set DG(m, r) is a vector space of 2m(r+2) binary symmet-
ric matrices of size m × m with the property that the mod-
ulo 2 sum of two distinct matrices has rank at least m − 2r.
The matrices in DG(m, r) can be parameterized by elements
a0, a1, . . . , ar from the finite field F

m
2 by setting

xP (a0, . . . , ar)y
> = Tr

[

a0xy +
r

∑

t=1

at(x
2t+1 + xy2t + 1)

]

,

where Tr denotes the trace from F
m
2 to F2, and multiplication in the

right side is modulo an irreducible polynomial used to generate the

finite field F
m
2 . The set DG(m, (m − 1)/2) is the vector space of

all binary symmetric matrices.

Let N = 2m and C = 2m(r+2). The Delsarte Goethals frame

(DGF (m,r) for short) [6] is an N × C complex matrix where the

rows are indexed by binary m-tuples x, and the columns are indexed

by pairs (P, b) where P ∈ DG(m, r) is a binary symmetric matrix

and b is a binary m-tuple. The entry in row x ∈ F
m
2 and column

(P, b) is given by

ϕP,b(x) = ıxPx>+2bx>

. (1)

Theorem 1. The DGF (m, (m − 1)/2) is weakly democratic; two

sets of rows indexed by affine subspaces of the same dimension are

equivalent.

Proof. All arithmetic in the exponent of (1) takes place in Z4, the

ring of integers modulo 4, and that for all binary vectors w ∈ F
m
2 ,

(x+ 2w)P (x+ 2w)> = xPx>. Since

(x⊕ y)P (x⊕ y)> = (x+ y)P (x+ y)>

= xPx> + yPy> + 2yPx>,

it follows that interchanging rows of the DGF indexed by x and x⊕y
can be realized by interchanging columns (P, b) and (P, b+yP ) and

multiplying by the phase factor yPy>. Next, let A be a nonsingular

linear transformation. We have

(xA)P (xA)> = x(APA>)x> = xPAx
> + 2dQA

x>,

where PA, QA are binary symmetric matrices such that

APA> = PA + 2QA (mod 4),

and dQA
is the diagonal of QA. It follows that the permutation of

DGF rows x → xA can be realized as the permutation of columns

(P, b) → (PA, dQA
⊕b⊕bA>). Thus, the measurements x ∈ Ω are

equivalent to the measurements in the set x′ ∈ ΩA ⊕ y for a signal

f ′ obtained from a modulation and permutation of the original signal

f . These two operations preserve sparsity, and the corrections can

be implemented during signal recovery.

It can also be shown that the DGF (m, 0) is weakly democratic

in that two sets of rows indexed by affine subspaces of codimension

1 are equivalent.

4. EXPERIMENTS

We now evaluate the CS recovery performance of the structured re-

jection algorithm described in Section 2 via a suite of simulations

and compare it to that of the approach in [3].

Our measurement matrix Φ is the real matrix with N = 2m+1

rows and C = 22m columns obtained from the DGF (m, 0) via

Gray mapping, i.e., doubling the number of rows and storing the real

part of the original matrix in the upper half and the imaginary part in

the lower half.

To perform vector quantization, we used the scalar vector quan-

tizer (SVQ) [7] trained as follows. For each collection Ω of re-

jectable subsets of D measurements considered, we generated a se-

quence of 200 k−sparse α ∈ R
C with standard Gaussian nonzero

entries. For each α we calculated N measurements as y = Φα
and rejected the entries of y indexed by the elements of the largest

norm subset from to Ω. A maximum of 10 iterations of the two-step

training algorithm from [7] were performed to fit the quantizer to the

distribution of surviving measurements. We also performed uniform

scalar quantization (USQ) as a baseline [3].

To evaluate the performance of the new approach, 100 measure-

ment vectors y were generated and quantized in the same manner.

Basis pursuit denoising [8] was then used to obtain the estimate of

the signal α̂ using the SPGL1 toolbox [9]. As in [3], the recovery

SNR served as the performance measure:

SNR = 20 log10
‖α‖2

‖α− α̂‖2

Figure 1 plots the recovery SNR versus the rejection rate D/N of

the structured (Ω = Ωs or Ω⊥

s ) and unstructured (Ω = all subsets

of size D) rejection approaches. The bitrate per surviving measure-

ment after taking into account the rejected index coding overhead is

plotted in Fig. 2. The rejected index coding overhead of the unstruc-

tured rejection is so large that the resulting bitrate per measurement

is smaller than that of the conventional approach (i.e. at D = 0).

As a result, the unstructured rejection approach fails to match the

performance of the conventional approach. Structured rejection al-

lows us to boost the bit rate as D increases; the gain due to finer

quantization outweighs the performance degradation due to the loss

of measurements, as shown in Fig. 1. Once the number of rejected

measurements D becomes large, the tradeoff is broken and the im-

proved quantization accuracy cannot balance the degraded recovery

performance due to undermeasurement. The figure shows that the

tradeoff’s optimal rejection rate D/N is smaller as the measurement

ratio N/C decreases. The results also show that the smaller collec-

tion Ω⊥

s outperforms Ωs, suggesting that having a smaller collection

Ω suffices in this case.

5. CONCLUSION

There is value to redundant measurement in compressed sensing.

With a fixed total bit budget, rejecting D measurements allows to

provide a finer quantization mesh on the measurements that remain.

The result is an improvement in recovery performance: as our sim-

ulation results demonstrate, given N measurements, it is better to

reject up to half of them and quantize the rest finely rather than keep

them all but quantize them coarsely. To realize these gains, weak

democracy of the measurement matrix is required, meaning that
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Fig. 1: Reconstruction SNR versus fraction of rejected measurements D/N . We use a DGF (7, 0) measurement matrix on K = 20-sparse

signals α with N (0, 1) nonzero entries. The dimensionality of the signal space is (a) C = 2N (a) and (b) C = 5N (C random columns of the

measurement matrix are used). We use SVQ with block length 32. We set a total bit budget of B = 2N bits. SVQ consistently outperforms

USQ and reaches optimal performance for rejection rates of 1/2 and 1/4, respectively.
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Fig. 2: Bitrate per surviving measurement versus D/N for the total

bit budget B = 2N bits. DGF (7, 0).

recovery must be robust to dropping certain subsets of D measure-

ments. The Delsarte-Goethals frame is an example of a deterministic

measurement matrix that is weakly democratic. Future work will

focus on characterizing the optimal points on the rejection-structure

tradeoff to find suitable collections and sizes of rejection supports Ω.
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